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CHAPTER 3 

THE LR REPRESENTATION OF PARTICLES 

The Analysis of the Stern-Gerlach Experiment 
QuWT-c3-220417 

Reference [102]-C presented the fundamentals of a particular locally real 

representation of quantum mechanics, LR. In the present work, we extend 

LR to a more inclusive representation that treats the “non-observables” of  

empty waves that are generated during condensation processes of photons 

and particles. See section 1.1. The following sections focus on a more 

inclusive LR representation of particles with particular emphasis in the 

context of the 1922 Stern-Gerlach experiment, SGE. [390] 

The locally real 3-dimensional wave packet structures of photons and 

particles are shown in [102]-C to be substantially different. Correspondingly, 

macroscopic devices such as calcite polarizers and Stern-Gerlach magnets 

for measuring the respective quantum states of photons and particles are 

also substantially different.    

Despite those differences, there are profound mathematical homologies in 

the condensation processes that occur during the respective measurement 

processes and in the ensemble-distribution of output states. These 

homologies contribute to the perception by the Probabilistic Interpretation of 

quantum mechanics, PI, that the standard form of the wave function is 

sufficient in the complete representation of physical phenomena, albeit in a 

probabilistic (non-real) and non-local manner.      

In the foregoing sections we examined those condensation processes and 

ensemble-distributions in detail for photons. In the present section we 

examine the particular aspects of particle measurement imposed by LR that 

result in those homologies with photons. 

In PI the wave packet of a particle such as the spin 1/2 electron in free space 

is represented by an oscillatory amplitude and an intensity envelope 

represented one-dimensionally in Fig. 3.1. In LR the electron is more 

completely represented by a coherence wave of objectively real spin  
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Fig. 3.1.  A simplistic one-dimensional representation of a particle wave packet in the 

probabilistic interpretation, PI.  

 

structures. The mass-bearing, particle-like electron and its associated 

magnetic moment μe reside on one constituent spinor of one of the spin 

structures as depicted in the Fig. 3.2a representation of the wave packet that 

shows only a sampling of the constituent spin structures. For purposes of 

visual clarity Fig. 3.2a is a one-dimensional representation of a sampling of 

constituent spin structures and only the single electron-occupied spinor is 

depicted.  

A bisecting cross section of a single spin structure of the electron’s 

coherence wave packet is depicted in Fig. 3.3. That depicted cross section 

happens to be of the “occupied” spin structure, i.e. the particular spin 

structure that includes the single spinor occupied by the particle-like electron. 

That bisecting cross section is inclusive of the pole orientation θp,ϕp of the 

spin structure hemisphere in a spherical coordinate frame and, solely for 

instructional purposes, atypically also includes the mass-bearing “occupied” 

spinor at θM,ϕM since in general ϕp≠ϕM. (The orientations of “observables” 

such as the particle mass M are denoted by capitalized subscripts while the 

orientations of the “non-observables” such as the pole of the spin structure, 

p, are identified by lower case subscripts. Applying that convention to photon 

wave packets, the arc bisector orientation is θa and the instantaneous energy 

quantum orientation on that arc is θE.) 
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Fig. 3.2a-c. (a) is a simplistic one-dimensional representation of an LR 

particle wave packet comprised of a coherence wave of spin structures and 

is an analog to the PI particle wave packet in Fig. 3.1. Under a condensation 

process the spatial extent of (a) diminishes and concurrently the constituent 

spin structures projectively condense to orthogonal spinors as depicted 

intermediately in (b) and to completion in (c).      
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Fig. 3.2d. Spatial probability distributions during condensation. 

 

 

Fig. 3.3. A bisecting cross section of a single spin structure that untypically 

includes the pole orientation spinor and mass-bearing spinor. 

We shall show below that when the electron wave packet suddenly 

encounters a substantial magnetic field the entire wave packet of spin 

structures and the spin structures themselves abruptly concurrently 

condense to a Dirac delta-like single spinor occupied by the particle-like 

electron that is aligned with the magnetic field. For a free electron that 

concurrent condensation is depicted in the sequence Fig’s. 3.2a→b. The 

accompanying Fig. 3.2d is a representation of the spatial probability 
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distributions during the condensation. In that process, the spatially 

unbounded wave packet of spin structures for a free electron shown in Fig. 

3.2a is initially Gaussian and remains Gaussian as the its characteristic 

length diminishes during the suddenly induced condensation. Although an 

LR analysis here of free particle interactions with magnetic field with respect 

to spin quantization would most directly analogously complement our LR 

analysis of (free) photon interaction with polarizers, it is far more instructive 

to instead analyze those particle interactions with respect to atomically 

bound electrons as used in the original SGE. Parenthetically, applying the 

analysis to atomically bound electrons as opposed to free electrons avoids 

the complication of treating ancillary Lorentz forces but that choice does not 

exclude generalization of the analysis to free particles.    

 

3.1 DIRECTIONAL QUANTIZATION AND LONGITUDINAL 

GRADIENT FIELDS  

Before proceeding to a detailed examination of atomically bound states as 

they progress through the gradient fields of the SGE magnet we first examine 

the requisite gradient fields for producing the experimentally observed 

“directional quantization” of those bound states from the perspective of LR. 

In the SGE, a beam of randomly oriented silver (Ag) atoms is directed toward 

a gradient magnet shown in Fig. 3.4a and directional quantization of the 

bound states is associated with the splitting of the atomic beam as it 

traverses the magnetic field. The magnet’s “lower” pole face includes an 

apex ridge along that produces a strong gradient field proximal to the apex. 

The “upper” pole is flat except for a 3 mm wide and 30 mm deep rectangular 

groove opposing the apex ridge on the lower pole face. The lower pole’s 70° 

apex and the upper pole’s flat region are separated by 2 mm. The atomic Ag 

beam is directed at ~1000 m/s along a trajectory <1 mm above that apex 

where it experiences a transverse field strength of ~104 Gauss as well as a 

strong transverse gradient field ~103 Gauss/mm. [383-384] Fig. 3.4b is a 

cross section of the Fig. 3.4a perspective view of the SGE magnet in which 

particular segments along the beam path are identified. Fig. 3.4c is an 

approximate representation of the corresponding magnetic field B(y) along 

the Fig. 3.4b beam path showing the field inflections within beam segments 

11, 13, 15 and 17 characteristic of an opposed pole magnet.  
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The energetics mechanism of the randomly oriented incident μe transitioning 

to alignment with +B (along +z) or –B (along –z) is not directly addressed by 

PI. Rather, that transition is presented as an ad hoc outcome associated with 

the measurement of μe relative to the B axis, a measurement which is 

inherently required by PI to yield discrete quantized values. Nevertheless, 

this lack of a transition mechanism in SGE is commonly identified as a 

quintessential example of the “measurement problem” endemic to PI. [382] 

[384] 

Shortly after the directional quantization results of SGE were reported in 

1922, Ehrenfest hypothesized in communications with Einstein that the 

energetics mechanism was associated with a sudden “schock” (shock) as 

the electron entered the field of the magnet. This particular speculation was 

not pursued in a paper that Ehrenfest and Einstein published shortly 

thereafter that sought without success to identify a viable energetics 

mechanism for directional quantization. [383] Heisenberg proposed several 

years later in 1927 that the rotation of the electron’s magnetic moment μe to 

alignment with the magnetic field is caused by a “schütteln” (jolting) 

mechanism, most likely a sudden process analogous to Ehrenfest’s shock 

hypothesis. In either case a viable mechanism for the sudden process would 

necessitate the identification of an operant force acting over some finite time. 

A satisfactory formulation of that mechanism has continued to be elusive for 

a century. [382] [384] 

 A sudden process is the essential starting point for an LR-based energetics 

mechanism that produces the directional quantization observed in SGE. In 

our LR analysis of the SGE with regard to the underlying basis of directional 

quantization we also examine the 1929 Rabi experiment [385] since the latter 

also demonstrates directional quantization but does so solely from a 

longitudinal gradient that is largely exterior to the magnet’s pole perimeter. 

Directional quantization for the SGE magnet is commonly associated with its 

characteristic transverse gradient magnetic field within its pole perimeter. In 

the following we show that the SGE magnet also has an exterior longitudinal 

gradient comparable to that of the Rabi magnet and propose that the 

underlying basis of directional quantization for the SGE is fundamentally 

related to its longitudinal gradient whereas its transverse gradient is 

secondary to that basis.   
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Fig. 3.4a-c. (a) shows a perspective view of a SGE beam source and 

magnet. Only upwardly deflected atoms in the beam are depicted. Empty 

electron waves are undeflected. (b) is a side view of the SGE magnet and 

significant segments along the beam path. (c) is the magnetic field  along the 

beam path relative to those segments.   
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Because of the relevance of the Rabi experiment to the SGE we briefly 

detour to an analysis of Rabi’s experiment from the perspective of LR. The 

Rabi experiment magnet simply consists of opposed flat rectangular poles 

separated by 2 mm with an Ag beam directed through the pole gap on the 

plane bisecting that gap. Fig. 3.5a is a top view of the magnet and beam path 

with the “upper” pole removed. The field is a uniform 104 Gauss for all regions 

on that plane within the magnet that are 2 mm or more distal from the pole 

edges. For purposes of achieving directional quantization the Rabi 

experiment makes explicit use of the high gradient naturally provided by the 

fringe field that extends from ~4 mm outside the pole perimeter to ~2 mm 

inside the pole perimeter. Because of symmetry considerations, the fringe 

field B vectors are normal to the bisector plane and the fringe field constitutes 

a longitudinal high gradient with respect to a beam directed on that plane 

toward the magnet.  

The fields of the Rabi magnet along the y axis on that bisector plane and of 

the SGE magnet on its beam path are very similar despite the differences in 

the respective magnet designs. Fig. 3.5b depicts B(y) in the bisector plane 

for the Rabi magnet.  The pole gap of Rabi magnet is 2 mm. For the SGE 

magnet the gap between the ridge apex of the “lower” pole and the flat region 

of the opposing “upper” pole is also 2 mm. The uniform field on that bisector 

plane within the Rabi magnet is ~104 Gauss. Along the beam path within the 

SGE magnet the field is also a relatively constant ~104 Gauss (irrespective 

of a strong gradient normal to that beam path). Both magnets are configured 

with opposed poles that similarly constrain the respective longitudinal 

gradient fringe fields that are exterior to the pole perimeters and provide 

convergence to uniform fields on the beam paths within the pole perimeters. 

Effectively, the two magnets have fields with similar inflection points that 

define their respective longitudinal high gradient boundaries and have similar 

longitudinal gradient fields B(y) along the respective Ag beam paths.   
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Fig. 3.5a-b. (a) shows the Rabi experiment and the beam path. (b) shows 

the magnetic field along the y axis in the plane located between the magnet 

poles.   
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The velocity of the Ag beam in the Rabi experiment is the same as that for 

the SGE, ~1000 m/s. However, because the Ag beam is directed on the Rabi 

magnet pole bisector plane at 80° from the normal to the pole edges, the 

velocity component through the gradient field is only 1000 cos 80° m/s=170 

m/s. Then the 1000 m/s velocity of electron wave packets through the SGE 

longitudinal gradient field far exceeds the 170 m/s velocity component along 

the y axis through the comparable Rabi magnet longitudinal gradient field.  

Importantly, the geometry and methodology of the Rabi experiment provides 

for a highly accurate absolute quantitative confirmation of μe, to about 1 part 

in 500, from measurement of the beam split and from an accurate 

measurement of the average field traversed by the beam based upon field 

measurements at the beginning and at the end of the beam path. For the 

SGE accuracy for the measurement of μe is more problematic because of 

the indeterminacy of the B field experienced by the Ag beam within the 

transverse gradient.  

From the perspective of LR, the Rabi experiment shows that the sudden 

process of directional quantization occurs at or before the Ag beam entry into 

the 6 mm longitudinal high gradient field along y since virtually all of the 

deflective force that occurs on the beam path is confined to that 6 mm high 

gradient zone. If directional quantization occurs at some point intermediate 

to pt.10 and pt.11 instead of at pt.11 the observed deflection of the Ag atom 

at pt. 14d from which μe is computed would be the same. Conversely, if the 

beam path does not fully traverse the 6 mm high gradient field, the resultant 

beam deflection is diminished and the calculated μe is lower than that of 

independently determined values of μe.  

(An LR retrospective analysis of the Rabi experiment will show that the 

deflection either to pt.14u left or to pt.14d right deterministically corresponds 

respectively to the objectively real polar orientation θp<90° or >90° of the 

incident electron’s spin structures. The u and d notations respectively denote 

conventional measurements of “spin up” and “spin down” quantum states.)      

Because we cannot exclude the possibility that directional quantization may 

have occurred at some point between pt.10 and pt. 11 at a distance along y 

greater than 4 mm from the pole perimeter, we conclude that for the Rabi 

experiment the field characteristics in the neighborhood of the 4 mm exterior 
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boundary provide a sufficiency criterion for inducing directional quantization 

in electrons denoted as Qe-s as opposed to the necessary or actual criterion 

for electrons, denoted simply as Qe.  

That sufficiency criterion Qe-s is of interest because it can be quantified for 

the Rabi experiment and can then be applied to the SGE because of the 

similarities of longitudinal gradient fields for the two experiments. The simple 

geometry of the Rabi magnet is amenable to analytic representation. For the 

field exterior to the magnet in the gap bisector plane that representation 

reduces to the simple expression  

B(y)=h arctan (g/y) 

where the pole gap dimension g=2 mm, h is a scale factor of the magnetic 

field strength, and y=0 mm at the pole edge. At y=−4 mm, B(−4)=1466 Gauss 

and ∂yB(−4)=370 Gauss/mm. The scale factor h is found by a commonly 

applied calculation of the interior B(y) on the bisector plane between opposed 

flat poles and matching the B(0) perimeter value to that of the exterior B(0) 

perimeter value.  

The relevant suddenness criterion Q for inducing directional quantization is 

based upon achieving a critical time rate of change of the magnetic field ∂tB 

for a particular particle type. For a particle, such as an electron, moving at 

some velocity v=∂y/∂t relative to a static gradient field ∂B/∂y, that criterion is 

simply some particular value of the product of those quantities at some value 

of yDQ where directional quantization is estimated to have occurred, 

Qe=(∂B(yDQ)/∂y)(∂y/∂t)=∂B(yDQ)/∂t. 

For the Rabi experiment, where the velocity component along y through the 

fringe gradient is 170 m/s, the criterion 

Qe-s= ∂yB(−0.4 cm) ∂ty 

       =3.7x103 gauss/cm∙1.7x104 cm/s  

       = 6.2x107 gauss/s  ≥ Qe. 

Computed for the pt.11 field inflection at y=−4 mm that defines the exterior 

high gradient boundary, 4 mm distant from the pole perimeter. Clearly, the 

actual necessary criterion Qe may be realized at a greater distance along y 

from that boundary where the gradient is lower.   
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Fig. 3.5b shows the general contour of B(y) where the pole perimeter is 

located at y=0. Importantly there is a further increase of the gradient beyond 

the gradient local to the pt.11 inflection. That further increase continues until 

the pt.13 inflection is approached. Consequently Qe-s is continuously 

exceeded (along with Qe) as the electron traverses the increased gradient 

region between pts.11 and 13. As the neighborhood of the pt.13 inflection at 

y=+2 mm is traversed a progressively diminishing gradient is encountered 

that results in a progressively diminishing ∂tB passing below Qe-s= 6.2x107 

gauss/s and below Qe. For still larger y beyond pt.13 the diminishing gradient 

converges B(y) toward a constant value of 104 gauss inside the Rabi 

experiment magnet at pt.14.   

Compared to the Rabi magnet, the SGE magnet does not lend itself to a 

simple analytical representation of its exterior fringe field. However, as noted 

above, the similar properties of a 2 mm pole gap and a maximum field of 

~104 gauss suggest that B(y) and ∂yB(y) along the respective beam paths 

are functionally approximately comparable. However, the SGE 103 m/s beam 

velocity through the longitudinal gradient of the SGE magnet is 5.88 times 

larger than that of the Rabi experiment. As a result, that Qe-s=6.2x107 gauss/s 

sufficiency criterion is achieved at a substantially greater distance from the 

SGE magnet pole perimeter. 

To the approximation that the Rabi and SGE magnets have functionally 

comparable B(y) along their respective entry beam paths we can then readily 

solve for the SGE y value that yields the sufficiency criterion. We find that 

y≈−10 mm, where B(−10)=617 gauss, ∂yB(−10)=−63 gauss/mm and the SGE 

v=103 m/s, substantially gives the Qe-s=6.2x107 gauss/s sufficiency criterion 

for directional quantization. 

The principal objective of this exercise in comparing the SGE and the Rabi 

experiment is to demonstrate that the process of directional quantization for 

the SGE occurs in the longitudinal gradient exterior to the magnet and not in 

the transverse gradient that is characteristically associated with the SGE. 

The transverse gradient is then understood to have the reduced, ancillary 

role of spatially distinguishing the electrons, which have already been 

directionally quantized, by providing an upward or a downward deflection. 

In this generalization of the Rabi experiment to the SGE with similar 

longitudinal fields, the expression for the criterion 
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Qe =∂yB(yDQ)∙∂ty=∂tB(yDQ)=6.2x107 gauss/s 

is presumed to remain valid for the latter since the respective velocities 

through the longitudinal gradient, vy=1.7x104 cm/s and vy=105 cm/s, differ by 

less than an order of magnitude. 

However, by any measure both of these velocities of electrons, coupled to 

Ag atoms, are orders of magnitude smaller than that of free electron beams 

in typical practical applications. Accordingly, the range of validity for the Qe 

expression should not be indiscriminately extrapolated to extreme deviations 

of electron velocity beyond the vy=1.7x104 cm/s in the Rabi experiment.  

An example of an underlying basis limiting the validity range of Qe relates to 

the duration of the condensation process. That process involves a physically 

extended coherence wave condensing to point-like δ-forms and is expected 

to occur over some very small but finite time Δtc independent of the sudden 

exterior field perturbation that triggered it. For the extraordinarily slow 

electron progression through the Rabi and SGE longitudinal gradient, the 

finite Δtc can be approximated as an instantaneous event occurring to 

completion while the electron has progressed no further than the beginning 

of the longitudinal gradient region. The time for the electron to traverse that 

entire longitudinal gradient region is then some Δtg>>Δtc.  

If the electron velocity is greatly increased to the extent that Δtg <Δtc, the 

condensation process of directional quantization is disrupted. Directional 

quantization for such large electron velocities can still be accommodated by 

extending the gradient field length such that minimally Δtg >Δtc to 

simultaneously ensure that directional quantization is completed within Δtg 

and that the resultant anti-aligned δ-forms are at least microscopically 

separated by the gradient in the remaining Δtg.    

       

3.2 OUTLINE OF SGE ANALYSIS  

We return to an analysis of the SGE with the benefit of some measure of a 

Qe criterion for directional quantization. In this analysis we will make 

extensive use of the enumerated segments along the beam path shown in 

Fig. 3.4b and the Fig. 3.4c representation of the associated magnetic field 

along that path. These figures show that the field inflections occur in the short 
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segments 11, 13, 15, and 17 which we identify as transitional segments. In 

the longer intervening segments 10, 12, 14, 16, and 18 the wave states are 

substantially invariant. The processes occurring in these segments are 

briefly described in the several paragraphs below followed by a more detailed 

analysis.   

● The field-free wave state of an Ag 5s electron on segment 10 is a uniform 

amplitude coherence wave of spin structures on the 5s orbital.  

● As that uniform amplitude coherence wave enters transitional segment 11 

it has an encounter with a suddenly changing magnetic field ∂tB that exceeds 

Qe causing the entire wave to rapidly condense to a single Dirac-delta “δ-

form” occupied spinor aligned with the SGE magnetic field B as it reaches 

the end of segment 11. That B-alignment constitutes directional quantization.   

● As the electron wave on the 5s orbital enters segment 12 it remains in δ-

form and B-alignment throughout the entire longitudinal high gradient field of 

segment 12 because Qe is continuously exceeded over that segment. 

Effectively, the δ-form condensation state is continuously induced over the 

entire segment where Qe is exceeded.  

● The δ-form electron wave enters transitional segment 13 and reaches a 

point at which the diminishing gradient causes the electron to experience a 

∂tB below Qe. At that point the δ-form electron wave is rapidly restored to a 

state similar to that of the field-free uniform coherence wave of spin 

structures on the 5s orbital similar on segment 10. However, because of the 

continued presence of the substantial B field during that restoration transition 

the particle-like electron on the restored uniform coherence wave of spin 

structures remains in B-alignment as it exits segment 13.  

● The restored uniform coherence wave of the 5s electron is unaltered as it 

enters and traverses segment 14. The only consequential outcome is a small 

but measurable 0.1 mm deflection from the initial beam path because of the 

high ∂zB≈104 gauss/mm transverse gradient acting upon the B-aligned 

electron. 

● The restored uniform coherence wave with a B-aligned electron exits 

segment 14 and enters segment 15 where it passes a point at which the 

magnitude of the negative ∂tB exceeds Qe. From the perspective of 

symmetry considerations, the sudden process of condensation that occurs 
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as a coherence wave of spin structures in a low field enters some ∂yB, as in 

segment 11, is also expected to occur for that coherence wave in a high field 

as it enters the negative of that same ∂yB as in segment 15. In both cases it 

is the magnitude of a sudden ΔB change that induces condensation and not 

the sign of that change. More generally, the criterion Qe is relates to a 

magnitude |∂tB| and is not dependent on the sign of the ∂tB. Consequently, 

condensation occurs in segment 15 producing a transition to a δ-form 

occupied spinor in B-alignment on that segment.   

● The occupied δ-form spinor exits segment 15 and enters the (negative) 

high gradient on segment 16 where Qe is continuously exceeded. As a result 

the δ-form occupied spinor is substantially unaltered as it traverses segment 

16 and enters segment 17. 

● In segment 17 the occupied δ-form spinor reaches a point at which the 

magnitude of the diminishing gradient causes the ∂tB value to fall below Qe 

and the occupied δ-form spinor is rapidly restored to a state similar to that of 

the uniform coherence wave of spin structures on segment 14. Notably 

however, because B~0 after that restoration transition, the particle-like 

electron on the restored uniform coherence wave of spin structures is not 

energetically constrained to remain in B-alignment (as it was upon exiting 

segment 13).  

● The restored uniform coherence wave that exits segment 17 and traverses 

segment 18 is very similar to the initial wave on segment 10. Both have the 

same polarization condition of either θp<90° or >90° and both have random 

orientations of their particle-like electron.   

The above brief synopses of the processes occurring in the beam segments 

are intended only as an overview of the field conditions that drive those 

processes. The underlying mechanisms associated with those processes 

are analyzed below from the perspective of LR including the energetics and 

dynamical forces associated with directional quantization and the 

measurement problem.  
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3.3 SGE ANALYSIS      

For the SGE the Ag beam distal to the magnet on beam segment 10 of Fig. 

3.4b is effectively in a field-free region where B10=0. The corresponding 

representation of the electron on the 5s orbital of an Ag atom is depicted in 

Fig. 3.6a as a uniform coherence wave of spin structures. The accompanying 

detail of that orbital in Fig. 3.6a shows a representative sampling of the spin 

structures all of which have a common orientation θp-10,ϕp-10 and a common 

magnitude. Of some consequence in the following analysis, the spin 

structure polar orientation θp-10<90°. The detail sampling happens to include 

the singular spin structure on which the particle-like electron is located. For 

visual clarity, for all of the spin structures in the detail sampling, only the 

spinor on which particle-like electron resides is depicted. The depicted 

occupied spinor happens to have a polar orientation θM-10>90° but we shall 

see in the following that whether θM-10>90° or <90° is not consequential. In 

contrast, an initial field-free spin structure polar orientation θp-10 that is either 

>90° or <90° will be seen to be deterministically consequential. We shall 

follow the example of θp-10<90° here since the results of the converse θp-

10>90° are readily deduced.        

As the θp<90° 5s electron coupled to an Ag atom first enters segment 11 the 

field B11≈0 and is not substantially different from the B10=0 throughout 

segment 10. Consequently, in that initial portion of segment 11 the wave 

representation of the electron is unchanged from that on segment 10. 

However, beyond that initial portion of segment 11 is a field inflection over 

which B11 substantially increases. For the SGE beam with a velocity ~103 

m/s the sufficiency criterion for directional quantization Qe-s=6.2x107 gauss/s 

is estimated to occur within segment 11 approximately at y=−10 mm (where 

y=0 at the pole perimeter in segment 12). Since B11~0 at the initial portion of 

segment 11, the criterion for directional quantization Qe occurs within 

segment 11. 

At the point Qe is achieved, the 5s electron wave begins a condensation 

process as it continues along segment 11. In the transitional phase of that 

condensation the Fig. 3.6a uniform coherence wave of spin structures on the 

5s orbital circumferentially condense toward a Gaussian distribution on the 

orbital as shown in Fig. 3.6b. Concurrently there is an accompanying 

projective condensation along the +B axis of the individual spin structures  
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Fig. 3.6a-d. The sequence depicts electron wave samplings on the 5s orbital 

as the Ag atom is (a) distal to a magnetic gradient, (b-c) entering a strong 

magnetic gradient, and (d) fully condensed to delta-form while still in the 

magnetic gradient.   
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toward a Gaussian distribution of the constituent spinors. That projective 

condensation of individual spin structures along with further circumferential 

condensation of the spin structure Gaussian is depicted in transition in the 

Fig. 3.6c. detail.    

These two condensation processes are shown to completion in the Fig. 6d 

detail as a single remaining spin structure projected to an occupied δ-form 

spinor along the +B axis and an empty complementary orthogonal δ-form 

spinor along the –B axis. The two δ-form spinors on segment 11 continue 

substantially unchanged onto segment 12 where the field gradient further 

increases. However, before proceeding further we have interest in examining 

mathematical representations of the segment 11 Gaussian condensation 

processes. And we have particular interest in examining the energetics and 

dynamics that drive the particle-like electron from some θM orientation to 

alignment with the +B axis at 0° since this process constitutes the essence 

of the directional quantization mechanism and the underlying conundrum of 

the measurement problem.   

We proceed here with the example of with θp<90° for the 5s orbital electron 

wave on an Ag atom. The figure depicts the concurrent processes of 

circumferential condensation of the coherent spin structure orbital wave to a 

single spin structure and the projective condensation of the individual spin 

structures.   

  

3.4 PROJECTIVE CONDENSATION AND                                           

THE QUANTUM POTENTIAL  

The two condensation processes can independently be examined. In the 

present context of LR wave packets comprised of a coherence wave of 

spin structures, it is of particular advantage if we model the physical 

characteristics of the condensations with the modulus of the wave function 

rather than with the entire wave function. Bohm applied this simplification of 

utilizing the modulus in extracting an expression for an effective quantum 

potential from Schrödinger’s equation. We shall similarly be making use of 

that expression for the effective quantum potential here. We also have an 

immediate interest is in examining the behavior of an analytical 

representation of the modulus during the sudden condensation process 
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since the quantum potential is a function of derivatives of that modulus. 

Spatially, that modulus becomes highly peaked as the condensation 

process proceeds. 

 

In Bohm’s treatment, the complex wave function is written as 

Ψ=A exp(iS/ħ)   

where A is the modulus of Ψ and where A and S are real. This form of the 

wave function is applied to Schrödinger’s one-dimensional equation  

iħ∂tΨ= −(ħ2/2m) (∂/∂x)2Ψ+V(x)Ψ 

where V(x) is a classical potential that may be present.  

Bohm shows that when the field represented by ψ is treated as objectively 

real, the particle of mass m dynamically responds as if in a total potential  

T(x)=V(x)−(ħ2/2m) [(∂/∂x)2A]/A 

implying the existence of a “quantum potential” identified as 

U(x)=−(ħ2/2m) [(∂/∂x)2A]/A 

which notably is a function of A, the modulus of Ψ.  

In the analysis of condensation we need only treat the amplitude modulus 

functions rather than the full wave function that is inclusive of an imaginary 

cofactor as applied by Bohm regarding quantum potentials. [390] The 

analysis of condensation will be applied here to a “spatially bounded wave,” 

the 5s orbital of an Ag atom but first we briefly digress here to examine the 

properties of a common spatially unbounded Gaussian wave packet in free-

space. 

 The one-dimensional free-space spatially unbounded Gaussian wave 

packet expressed as an amplitude modulus is 

A(x,t)=π -1/4 L(t)-1/2 exp[−x2/2 L(t)2]  

where the integral of the A(x,t)2 intensity   

∫ A(x,t)2 dx=1  
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over the limits −∞ to +∞ notably is an invariant of the length L(t) which is half 

of the characteristic Gaussian width at any time t. In the standard quantum 

mechanical formalism that invariance of the integral constitutes the requisite 

probability conservation for a process such as the rapid temporal decrease 

of L(t) resulting from an external perturbation, a process defined here as 

condensation. In the above form the presence of L(t) in the L(t)-1/2  factor 

exterior to the exponential is recognized as inherently providing for the 

probability-conserving normalization of the integral.     

In Bohm’s treatment of Ψ as representing an objectively real field there is a 

logical expectation that the contour of the modulus must have a functional 

relationship in mediating the position of a particle on a wave packet based 

on Born’s first assumption that positional probability is given by the squared 

modulus. [307] That expectation is explicitly excluded in PI where the non-

real probabilistic particle-like and the wave-like entities are not subject to 

causal mechanisms that move one with respect to the other.  

The force associated with a total potential T(x,t) consisting of a classical 

potential V(x) and the quantum potential U(x,t) is    

F(x,t)=∂xT(x,t) 

         =∂x[V(x)+U(x,t)] 

         =∂x[V(x)−(ħ2 ⁄ 2m) (∂x
2A(x,t) ⁄ A(x,t)].  

In the absence of a classical potential V(x) for a wave packet in free space 

there is a “quantum” force 

FQ(x,t)= −(ħ2 ⁄ 2m) ∂x[∂x
2A(x,t) ⁄ A(x,t)] 

that preferentially drives a particle-like entity residing on the wave packet 

toward the peak of the wave packet at x=0. The quantum force FQ(x,t) is seen 

as a measure of the derivatives of the amplitude magnitude and not the 

absolute magnitude of the amplitude magnitude at any instantaneous time t. 

This force independence with respect to absolute magnitudes of the 

amplitude, i.e. its modulus A. This independence is evident from the form of 

FQ(x,t) in which the leading π -1/4 L(t)-1/2  “scale” factor of A cancel. Conversely, 

the quantum force is entirely dependent upon the shape of the amplitude in 

coordinate space at any given time t, i.e. the shape of the Gaussian           

exp[-x2/2 L(t)2 ] factor and not a multiplicative scale factor of that factor. [304] 
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If that Gaussian exponential becomes more sharply peaked, e.g. as a result 

of a temporally diminishing L(t), FQ(x,t) increases consistent with Born’s first 

assumption. [307] 

(Parenthetically we note that Bohm’s interpretation of the underlying 

quantum formalism achieves the same predictions as PI, including the non-

local attributes of PI, but does so without abandoning objective reality. 

Because of the former, Bohm’s representation is not testable against PI. In 

our presentation of LR we demonstrate an objectively real representation 

that is local and is testable against PI and, by extension, against Bohm’s 

interpretation.)    

However, our immediate interest here is with regard to the wave of the 

unpaired Ag 5s electron. In contrast to the probability on a spatially 

unbounded free-space wave packet, the coherence wave of uniform 

amplitude spin structures on the 5s orbital constitutes a spatially bounded 

probability. We seek here the simplest representation of the condensation of 

that spatially bounded probability consistent with the underlying quantum 

mechanical formalism. 

That objective is achieved here by bounding the spin structure probability 

with a truncated Gaussian throughout the condensation process from a 

uniform circumferential distribution of equal amplitude spin structures to a 

singular spin structure localized on the orbital. The requisite representation 

begins with an orbital amplitude modulus  

AO(ρ,t) = π −1/4 LN(t)-1/2 exp[-ρ2/2L(t)2]   

analogous to that of the free-space expression but where ρ is positional 

parameter along the orbital circumference. In the spatially unbounded 

expression A(x,t) the length L(t) that appears in the π −1/4L(t)-1/2 cofactor to 

the exponential provides the normalization that conserves probability. In the 

bounded expression AO(ρ,t) probability that would be associated with the 

truncated tails of the bounded Gaussian needs to be excluded in the cofactor 

that provides for normalization. That exclusion is achieved by setting 

LN(t)≠L(t) and imposing probability conservation over the bounded Gaussian 

to solve for LN(t). 

At to, prior to the onset of condensation, the circumferential 5s “wave packet” 

consists of a uniform amplitude bounded distribution of spin structures 
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(unlike a particle wave packet in free space which is a conventional 

unbounded Gaussian). The initial uniform circumferential distribution of spin 

structures can be treated as a bounded distribution of the truncated central 

section of a dimensionally infinitely large Gaussian distribution since that 

central section is then inherently uniform in amplitude magnitude. However, 

probability is computed only over the bounded uniform spin structures. In 

that respect at t=to we set the length parameter L(to) to infinity, L(to)=∞ 

whereupon we get the required the constancy of the exponential cofactor 

over all ρ, −0.5 to +0.5.  

exp[−ρ2/2 L(to)2 ]=1 

which represents a uniform amplitude modulus of the spin structures on all 

ρ along the orbital circumference . 

At to we impose normalization of the integral of intensity evaluated over the 

unit circumference limits ±0.5  

 ∫ AO
2 dρ=1 

which sets the initial to probability P=1 and shows that  

LN(to)=π −1/2 =0.56. 

In the circumferential condensation process when L(to)=∞ decreases to finite 

values the distribution of spin structure intensities on the orbital is a truncated 

Gaussian peaked at ρ=0. For example at some time t1 where L(t1)=0.4, the 

Gaussian on the orbital is highly truncated. Since probability is conserved on 

that truncated Gaussian, we can readily solve for  

LN(t1)=0.366. 

This calculation is repeated for two more L(t) values and the results are listed 

below together with the above two results. 

For L(to)=∞, LN(to)=0.56. 

For L(t1)=0.4, LN(t1)=0.37. 

When L(t1)=0.4 the Gaussian width is 0.8 which is a substantial fraction of 

the unit circumference. As a result only the central section of a highly 

truncated Gaussian envelope is realized on the orbital circumference, 

centered at ρ=0. However, since that central section represents a very large 
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part of the total probability that would ordinarily be included in the unbounded 

Gaussian, the deviation of the LN(t1) value of 0.37 from the 0.4 Gaussian 

length is modest.   

For L(t2)=0.25, LN(t2)=0.247. 

When the L is reduced to 0.25 virtually all of the significant Gaussian 

envelope is realized on the orbital circumference and truncation is very small. 

In this regard the L(t2)=0.25 length bounded on a unit circumference very 

closely approximates the analytical form for an unbounded Gaussian wave 

packet. This is shown by the close convergence of LN(t2)=0.247 toward the 

L(t2)=0.25 length.       

For L(t3)=0.15, LN(t3)=0.15. 

With L(t3)=0.15 the Gaussian envelope is even more sharply peaked about 

the ρ=0 point. The extreme convergence of LN(t3)=0.15 to L(t3)=0.15, with 

only a vanishingly small differential, further emphasizes the approximation of 

the analytical form to that of an unbounded Gaussian wave packet.   

As L continues to decrease, the orbital amplitude modulus wave function AO, 

representing a coherence wave of spin structures, effectively condenses to 

a single δ-form spin structure (bearing in mind that those spin structures are 

themselves concurrently projectively condensing).  

The above LR analysis of the circumferential condensation process for the 

coherent spin structure wave on the orbital demonstrates that the respective 

wave states can be represented as Gaussian throughout that process even 

though they are bounded. Significantly, this analysis is consistent with the 

treatment of the underlying quantum formalism for condensation of 

unbounded Gaussians. Additionally, that LR analysis for the condensation of 

the coherent spin structure wave provides close analogies for the projective 

condensation of the individual spin structures that proceeds concurrently 

with the circumferential condensation. Importantly, it is from the analytical 

form of spin structure projective condensation that the underlying 

mechanism for directional quantization can be deduced.   

It must be emphasized that the condensation process is the response of the 

initial uniform amplitude orbital wave to a sudden ∂tB that equals or exceeds 

Qe and is independent of the particle-like electron that had initially resided on 

one of the spin structures of the orbital wave. In the condensation process of 
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the orbital wave its sharply peaked modulus about ρ=0 provides the quantum 

force that progressively drives the particle-like electron toward the remaining 

spin structures as L(t)→0.  

FQ(ρ,t)=−(ħ2/2me) ∂ρ[(∂ρ
2AO(ρ,t)/AO(ρ,t)]     

         =−(ħ2/2me)∂ρ[(∂ρ
2exp(−ρ2/2L(t)2)/exp(−ρ2/2L(t)2)] 

         =−ρħ2/[L(t)4me] 

From this equation we see, not unexpectedly, that initially where L(to)=∞, 

there is no net quantum force since the truncated “Gaussian” modulus is 

uniform over the entire orbital whereas as the condensation progresses with 

a decreasing L(t) the quantum force toward the peak at any point ρ rapidly 

increases because of the L(t)−4 dependence. This process effectively drives 

the particle-like electron circumferentially toward a remaining spin structure 

at ρ=0 but does so without altering the polar orientation θM of that electron 

and its magnetic moment μe. 

Fig. 3.6a depicts a sampling of the initial spin structures on the 5s orbital at 

to. Those initial spin structures are each composed of a two-dimensional 

hemispherical distribution of constituent uniform-amplitude spinors bounded 

by the spin structure hemisphere. We again follow the example of spin 

structures with θp<90° represented on a spherical coordinate system for 

which the +z axis is aligned with the +B axis of the SGE magnetic field. That 

coordinate system is denoted as “CS↑” in anticipation that the condensation 

will occur along the +B axis, an outcome associated with a spin up state. The 

+z,+B alignment is consequential because when the spin structure suddenly 

interacts with the magnetic field the spin structure spinors condense along 

the constituent spinor that is aligned with B.  

This condensation of spinors is independent of a particle-like electron that 

might be on one of the constituent spinors. An analogous condensation 

independence was noted in the context of empty photon waves condensing 

upon entry into a calcite polarizer.    

CS↑ is utilized here because that particular coordinate system is best suited 

to compactly and clearly represent the projective condensation process for 

the θp<90° example. At the conclusion of this section we will show that a 

spherical coordinate frame CS↓ with +z,−B alignment together with symmetry 
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considerations promptly represents the projective condensation process for 

the alternative example of θp>90°.        

We continue here with a representation of spin structure condensation in the 

spherical coordinate system for the example of θp<90°. At to the uniform 

amplitude distribution of spinors on each spin structure’s hemisphere can be 

represented as a truncated, central section of a dimensionally infinitely large 

two-dimensional Gaussian distribution since that central section is then 

inherently uniform. On this hemisphere we define a polar arc designated as 

β that lies entirely at an azimuthal ϕp-β and extends from the hemisphere’s 

boundary to the hemisphere’s +z axis intersection as shown in Fig. 3.7. The 

spinors along the β arc constitute a one-dimensional subset of the spin 

structure’s initially uniform amplitude spinors.    

At t>to when the spin structures encounter a sudden ∂tB that equals or 

exceeds Qe projective condensation is induced. For the spin structure that 

process relates specifically to the projection of its constituent spinors along 

the B axis orientation. As with circumferential orbital condensation, 

probability is similarly conserved in projective condensation and that 

conservation applies as well to the subset of spinors along any β arc. 

Accordingly, we utilize here a one-dimensional representation of projective 

condensation along a β arc that is analogous to that of the circumferential 

condensation representation for the electron’s orbital. The benefits of this 

approach are two-fold. Firstly, the representation demonstrates that the 

amplitude moduli along respective β arcs are truncated Gaussians that 

condense to δ-form, but more importantly the representation shows that the 

quantum force on the “occupied” β arc, i.e. the particular arc on which a 

particle-like electron resides, rotates the initial orientation of the magnetic 

moment μe from some initial θM to 0° (along the B axis). This rotation occurs 

during energy exchange between the electron with its coupled Ag atom and 

the magnetic field during its passage through the longitudinal gradient field 

∂yB.       

We begin the representation of projective condensation in analogy with 

circumferential orbital condensation by similarly constructing an amplitude 

modulus AH for a polar arc β on a spin structure hemisphere. 

That objective is achieved with a spin structure “hemispherical” arc modulus 

AH(ηβ,t,θp,ϕp-β) =π−1/4ℓN(t,θp,ϕp-β)-1/2 exp[-ηβ
2/2ℓ(t)2 ]  
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defined along a polar arc β lying in an azimuthal ϕp-β plane on the spin 

structure as shown in Fig. 3.7. On the spin structure hemispherical surfaces 

ηβ is defined as a positional quantity ηβ=θ where an arbitrary unit radius 

serves purely as a mathematical intermediary to give ηβ the dimensions of 

length, parameterized by the positional polar orientation θ. The parameter η 

is subscripted by β because hemispherical boundaries for respective polar 

arcs are dependent upon ϕp-β and θp (except in the singular case of θp=0°). 

That dependency also necessitates the functional dependence of AH and ℓN 

on θp and ϕp-β. That angular dependency is not applicable to ℓ(t) which is a 

monotonically decreasing function of time representing the condensation 

response of the spin structure’s spinors to a sudden change in magnetic field.     

Fig. 3.7. Detail showing the polar arc β on the occupied spin structure long 

which the relevant forces drive the occupied spinor into alignment with B.   

The spin structure has an orientation θp,ϕp. Relative to the +B axis, which is 

equivalent to the +z axis, the physical orientation of the pole’s azimuthal ϕp 

can be arbitrarily assigned unlike the polar orientation θp. For AH, the lengths 

ℓN(t,θp,ϕp-β) and ℓ(t) are the analogs of the lengths LN(t) and L(t) associated 

with the orbital amplitude modulus AO expression.  

As noted above, AH(ηβ,t,θp,ϕp-β) identifies the circumferential amplitude 

magnitude of the constituent spinors along a polar arc on the hemispherical 

spin structure as shown in Fig. 3.7 where that arc lies in a plane at some 

azimuthal ϕp-β. Before projective condensation begins at a time to the length 

ℓ(to)=∞ resulting in a uniform amplitude of constituent spinors given by   
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AH(ηβ,to,θp,ϕp-β)= π−1/4 ℓN(to,θp,ϕp-β)-1/2 

since the un-normalized Gaussian exponential co-factor of AH, 

exp(−ηβ
2 ⁄ 2 ℓ(to)2)=1.   

Concurrently, the length ℓN(to,θp,ϕp-β) is constrained to a well-defined, finite 

value as it provides for the necessary probability normalization of the uniform 

amplitude spinors along the Fig. 3.6a β polar arc at time to. 

Because of the bounded distribution of those inclusive β arc spinors on the 

hemispherical surface, ℓN(t,θp,ϕp-β) ≠ℓ(t) at any time t in analogy to LN(t) and 

L(t) for AO. Beyond to the spin structures evolve through a transitional 

projective condensation in which ℓ(t) decreases in representation of the 

distribution of the amplitude moduli of spinors on a β arc sharply peaking 

along +B. Concurrently, the quantity ℓN(t,θp,ϕp-β)-1/2 serves as a progressively 

increasing compensating normalization scaling factor for the spinor 

amplitude moduli along any selected β polar arc. Normalization imposes a 

well-defined constraint on the value of ℓN during the transitional phases of 

condensation.   

With regard to ℓN there is an important distinction between the orbital 

condensation of the coherent spin structure wave associated with AO(ρ,t) and 

the projective condensation associated with AH(ηβ,t,θp,ϕp-β). As to→t there is 

an apparent loss of probability associated with the integration of AH
2 over all 

constituent spinors of the progressively deforming spin structure. This loss 

is attributable to the spinor algebra projection of a physically contiguous, 

orthogonal spinor along the –B axis that is extracted from the projectively 

condensing spinors as shown in Fig. 3.6c. That loss is taken into account in 

the ℓN(t,θp,ϕp-β) value of AH(ηβ,t,θp,ϕp-β) but does not affect ℓ(t). 

Fig. 6d depicts the sudden process of spatial condensation and projective 

condensation to completion. The spatial condensation has effectively 

reduced the coherence wave packet of spin structures to a single spin 

structure which itself has projectively condensed to a single δ-form spinor. 

From spinor algebra, the relative probability of that δ-form (occupied) spinor, 

identified as “su” in Fig. 3.6d, is  

P=cos2 (θp  ⁄ 2). 
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Concurrently, from spinor algebra the condensation process also generates 

a complementary orthogonal δ-form (empty) spinor with a relative probability 

P=sin2 (θp ⁄ 2) 

showing that total probability is conserved. The occupied δ-form spinor sU 

and the empty δ-form spinor sd are initially contiguous. Our immediate focus 

in this section is a demonstration that the amplitude modulus along a β arc 

of the condensing occupied spin structure continues to be Gaussian despite 

the progressive loss of probability that reaches P=sin2 (θp ⁄ 2) on the 

complementary empty δ-form spinor sd. Accordingly, we continue with that 

focus here and defer a consideration of that empty δ-form spinor to a later 

point in this section. 

The P=cos2 (θp ⁄ 2) endpoint of probability on the occupied δ-form is 

recognized as a further mathematical constraint on the transitional values of 

ℓN(t,θp,ϕp-β) during projective condensation. It can readily be appreciated that 

the form of the amplitude magnitude AH(ηβ,t,θp,ϕp-β) already provides for a 

Gaussian intensity AH
2
 along any polar β arc at any instant in time t during 

the projective condensation process such as that shown in Fig. 3.6c. 

A complete functional value of that intensity requires an analytical expression 

of the probability scaling length ℓN(t,θp,ϕp-β) for any time t. The analysis to this 

point demonstrates that ℓN is a well-defined, mathematically constrained 

quantity from which such an analytical expression can reasonably be 

constructed, albeit with substantially greater complexity than that for LN(t). 

However, a primary focus here is in calculating the quantum force associated 

with the condensing amplitude modulus AH. In that calculation an analytical 

expression for the probability scaling length ℓN(t,θp,ϕp-β) is not needed 

because, as was the case for LN(t), the probability scaling length quantities 

cancel in the calculation of quantum force. 

It must be emphasized that the condensation process is caused by the 

sudden encounter of the wave with a magnetic field in satisfaction of the Qe 

criterion. That process occurs independently of the presence of the particle-

like electron on the wave. If there is a particle-like electron residing on the 

wave, e.g. at some initial orientation on a spinor at θM,ϕM, quantum forces 

that occur during the transitional condensation process move the electron to 

the δ-form spinor forming along the +B axis. It is the re-orientation of the 

electron spin that constitutes directional quantization. As the projective 
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condensation process proceeds, the relevant force is in the azimuthal plane 

that includes the electron-occupied spinor along a β arc. Consequently         

ϕp-β=ϕM.  

 

3.5 QUANTUM AND CLASSICAL FORCES IN 

PROJECTIVE CONDENSATION  

The quantum force FuQ together with the relevant classical magnetic force 

FuM is the total force Fu. Forces for the present θp<90° example are 

subscripted by “u” in anticipation that the measurement result is spin “up”. 

Then the total force 

Fu(ηβ,t,θp,ϕp-β)=∂(V+U) ⁄ ∂ηβ  

    =∂{μe•B(t)−(ħ2/2me) [(∂2AH ⁄ ∂ηβ ∂ηβ) ⁄ AH]} ⁄ ∂ηβ  

       =∂{μe B(t) cos ηβ−(ħ2/2me) {[∂2exp(−ηβ
2⁄ 2 ℓ2) ⁄ ∂ηβ ∂ηβ] ⁄ exp(− ηβ

2/2 ℓ2 )} ⁄ ∂ηβ 

     =−μeB(t) sin ηβ−ηβħ2 ⁄ ℓ4me  

        = FuM + FuQ                                                                                                                                                                                                                                                                                     

The classical magnetic potential V=μe•B(t) is associated with the electron’s 

magnetic moment at some time t when the Ag atom to which the electron is 

coupled is located in a field B(t) and μe is at some θ=ηβ on the unit radius of 

the spin structure. Fu(ηβ,t,θp,ϕp-β) expresses the sum of the classical 

magnetic force FuM and quantum force FuQ acting on the particle-like electron 

that resides on a spin structure. The force is applicable to an objectively real 

incident spin structure wave for which θp<90° where both the classical and 

the quantum potentials contribute negatively signed forces that drive the 

particle-like electron to the +B axis where ηβ=0 and θ=0° resulting in a “spin 

up” measurement.  

This result in which electron is driven to +B where θ=0° occurs even if the 

initial polar orientation of the electron is at some θM>90°. This outcome is 

deterministically set by the condition θp<90° which dictates that the Gaussian 

modulus condensation, from which the quantum force is derived, is along 

+B.  
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The Fu(ηβ,t,θp,ϕp-β) expression for the force is independent of the probability 

scaling coefficient ℓN. An analogous independence with respect to absolute 

magnitude was noted above in conjunction with the quantum force 

associated with the circumferential orbital condensation. Both of those 

condensations involve bounded Gaussians. In [390] Bohm had observed 

that because of the functional dependence of the quantum force on the 

amplitude modulus, the quantum force is inherently independent of the 

absolute magnitude of that amplitude. In the present analysis we have an 

example of that independence specifically relating to the probability scaling 

factors associated with bounded Gaussian amplitudes.   

As we noted earlier the analysis for projective condensation has proceeded 

with the example of θp<90°. That analysis utilizes the spherical coordinate 

system CS↑ to advantage since the spin up spinor projective condensation 

occurs along the +B axis which is aligned with the +z axis in CS↑. As a result 

of using CS↑, transitional Gaussians are conveniently centered at the β arc 

origin ηβ=0, derived forces direct the particle-like electron toward that origin 

and the associated mathematical representations of those quantities are 

rendered in their simplest, most transparent form.  

The analysis of projective condensation for the alternative example of θp>90° 

can also be analyzed using CS↑. However, because the spin down projective 

condensation then occurs along the –B axis, the resultant mathematical 

representations would not be expressed in an optimal form. That deficiency 

is most expeditiously achieved by switching to an inverted spherical 

coordinate system CS↓ in which +z and –B are aligned. The θp>90° condition 

in CS↑ becomes θp<90° in CS↓ and symmetry considerations immediately 

allow us to write the force that drives the particle-like electron toward the –B 

axis where ηβ=0. That force expressed in CS↓ is 

Fd(ηβ,t,θp,ϕp-β)=∂(V+U) ⁄ ∂ηβ  

  =∂{−μe•B(t)−(ħ2/2me) [(∂2AH ⁄ ∂ηβ ∂ηβ) ⁄ AH]} ⁄ ∂ηβ  

   =∂{−μe B(t) cos ηβ −(ħ2/2me) {[∂2 exp(−ηβ
2⁄ 2 ℓ2) ⁄ ∂ηβ ∂ηβ] ⁄ exp(− ηβ

2/2 ℓ2 )} ⁄ ∂ηβ 

  =μeB(t) sin ηβ−ηβħ2 ⁄ ℓ4me  

   = FdM + Fd
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The above total force Fd expressed in CS↓ results in a spin down 

measurement relative to B. The force Fd is identical to the Fu force expressed 

in CS↑ that results in a spin up measurement aside from a necessary change 

of sign in the former for the field B. That change in sign causes the FdM 

classical magnetic contribution of the force arising from the V potential to 

oppose the negatively signed FdQ quantum force that drives the particle-like 

electron toward the −B axis. Initially at some time t1 shortly after to, ℓ(t1) is still 

relatively large and the positive classical force dominates resulting in a net 

positive force that drives the electron away from the −B axis. However, ℓ(t) 

continues to decrease beyond t1 during the condensation process. Since the 

magnitude of the negative quantum force term is proportional to ℓ(t)−4, the 

initially positive net force rapidly transitions to a progressively larger negative 

net force that drives the electron to the −B axis, measured as a spin down 

event.  

The forces that drive the electron toward directional quantization are 

depicted in Fig’s. 3.8a-d. Fig. 3.8a shows the quantum forces FuQ and FdQ in 

their respective CS↑ and CS↓ at progressively increasing times t1, t2, and t3 

during projective condensation. The negative quantum forces drive the 

electron along the β-arc parameter ηβ→0 corresponding to directional 

quantization. The magnitudes of those quantum forces increase over time 

as the Gaussian wave becomes more sharply peaked. The classical 

magnetic forces FuM and FdM, shown in Fig. 3.8b in their respective CS↑ and 

CS↓, are oppositely signed. Figs. 3.8c and 3.8d respectively depict the net 

forces Fu and Fd at t3. Because of the positive value of the FdM contribution 

to the net force, the magnitude of Fu exceeds that of Fd along ηβ. 

Nevertheless, in both cases the outcome of directional quantization is 

reached within segment 11 well before the electron enters the transverse 

gradient region of the SGE magnet in segment 14 that produces the 

deflection of the electron and its coupled Ag atom.   

The above examination of the forces that produce directional quantization 

does not address the associated energy transfers. In the early analysis of 

the SGE by Einstein and Ehrenfest, [382] they considered known classical 

processes that would emit or absorb the requisite energy that would yield 

quantum state transitions to parallel or antiparallel alignments as the Ag atom 

traversed the magnet’s high transverse gradient field (segment 14 in Fig. 

3.4). [383] Their conclusion then that known classical processes did not 
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provide a basis for the requisite energy has substantially endured and has 

contributed to the general acceptance of the probabilistic interpretation, PI. 

[384] 

In our examination here for the LR basis of that requisite energy we note that 

the transfers necessarily occur outside of the perimeter of the SGE magnet 

poles in beam segment 11 on Fig. 3.4 and not on segment 14. As the Ag 

 

 

Fig’s. 3.8a-d. (a) qualitatively shows the quantum force acting upon the 

electron for three times t1, t2, and t3 representing temporal points of the spin 

structure’s progression to a highly singular probability distribution at t3. This 

force is independent of the spin state. (b) is the classical electromagnetic 

force which is spin dependent. (c) and (d) depict the two resultant forces for 

spin up and spin down that differ in detail because of the spin dependency 

but not in outcome.    
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atom traverses segment 11 the B field increases from some negligible B 

value to B~103 Gauss which very approximately is inclusive of the exterior 

inflection region of the longitudinal fringe field gradient. Within that segment 

the sufficiency criterion of 6.2x107 gauss/s is achieved at B~600 gauss where 

∂yB=−63 gauss/mm. For the randomly oriented incident Ag atoms the polar 

orientation θp of the electrons spin structures and the polar orientation θM of 

the spinor on which the electron resides are similarly random. 

 

3.6 ENERGETICS OF DIRECTIONAL QUANTIZATION 

For the spin up example of θp<90° on CS↑ the initial, random θM for the 

electron ranges from 0° (along +B) to almost 180°, corresponding 

respectively to the electron being initially directionally quantized to being 

almost anti-aligned with +B. Since the μe orientation is opposite to that of the 

electron, the latter extreme corresponds to a 2μe change in magnetic 

moment along +B following directional quantization. On average however 

the change in magnetic moment along +B is somewhat less than μe so, to 

order of magnitude, that change is approximated as Δμe~ −μe, effectively 

from giving the z component of μe a rotation from 90° (where it is 0) to 180° 

(where it is −μe).  Then, in the neighborhood of B~600 gauss the directional 

quantization energy  

ΔEDQ~Δμe B~ −10−20∙600~ −6x10−18 erg. 

In this directional quantization process for the example of θp<90° on CS↑ the 

energy change ΔEDQ is negative since the electron is in a lower energy state 

as a result of the anti-alignment of its magnetic moment μe and the magnetic 

field B. The negative ΔEDQ represents an energy lost by the electron Ag atom 

system during the spin up directional quantization process. 

Once directional quantization is promptly achieved within segment 11 at 

B~600 gauss it is of complementary relevance to also evaluate the dynamics 

of the electron with its coupled Ag atom as it traverses the longitudinal 

gradient that extends over segments 11, 12, and 13. The electron achieves 

directional quantization within segment 11 and remains directionally 

quantized as long as there are no forces to perturb it from that condition. 

Consequently, the electron is directionally quantized over the remainder of 
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segment 11 and all of segments 12 and 13. The change in field is 

ΔB11→13~104 gauss. Then over segments 11→13 there is a change in energy   

ΔEKE~ −μe ΔB11→13 ~ −10−20∙104 ~ −10−16 erg. 

The quantity ΔEKE is negative because the energy of the electron Ag atom 

system is progressively reduced as the system traverses segments 11→13. 

This reduction occurs since the initial low energy state of the anti-aligned μe 

and B is further reduced as the magnitude of B increases. In this process 

the negative quantity ΔEKE represents energy lost by the electron Ag atom 

system during the traversal of segments 11→13. The manifestation of this 

loss is a reduction in the kinetic energy of that system. The initial kinetic 

energy of the electron Ag atom system 

EKE=MAgv2/2=1.8x10-22 ∙ (105)2/2 ≈ 10−12 erg 

is diminished by ~10−16 erg, representing a 0.01% reduction in kinetic energy.  

The instructive benefit of examining the above kinetic energy loss ΔEKE 

alongside the directional quantization energy loss ΔEDQ is that both 

processes have a common origin, the interaction of the electron Ag atom 

system with the longitudinal gradient magnetic field. Effectively this 

interaction is a collision of that system with the gradient field. Both processes 

similarly constitute energy emissions of the system to the field for the 

presently considered spin up case, θp<90° on CS↑. For the alternative spin 

down case θp>90° on CS↑ (equivalently, θp<90° on CS↓), symmetry 

considerations immediately show that both of those energy transfers are 

respectively the same magnitude but opposite in sign meaning that both 

processes constitute energy absorptions of the system from the field. 

It can readily be appreciated that from the perspective of LR the directional 

quantization process goes to completion in beam segment 11 well before the 

perimeter of the SGE magnet poles is entered.  

3.7 EMPTY WAVES AND PROGRESSION OF WAVE 

STATES ON BEAM SEGMENTS 

Before we continue with further consideration of the electron Ag atom system 

as it progresses through the remaining segments, we first consider an 

ancillary event that occurs during the segment 11 projective condensation in 

which an empty wave entity is split off of the occupied 5s orbital wave of the 
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Ag atom. From the perspective of LR this event is analogous to the splitting 

of a photon into an occupied δ-form wave packet and an empty δ-form wave 

packet as the photon enters a birefringent material such as calcite.  

In anticipation of considering multiple propagating entities arising from 

splitting events, we separately symbolize those entities by representing them 

with their respective wave functions using abbreviated arguments of the 

relevant LR parameters. On beam segment 10 for the unpaired 5s electron 

of the Ag atom 

Ψe-10=Ψe-10(θp-10,θM-10,P10) 

suffices in that regard. For the present example where the pole of the 5s spin 

structures have a polar θp-10<90° on segment 10, the electron’s orientation 

with a polar θM-10 must be on the hemisphere defined by θp-10 at some 

azimuthal φp-10, and P=1. 

Fig. 3.9 is an exaggerated depiction of the beam path segments, both 

deflected and undeflected. Ψe-10 is represented as an “e” on segment 10.  

 

 

Fig. 3.9 Deflected and undeflected beam path segments in SGE for an 

incident polar orientation <90°. 

 

As the transitional segment 11 is first entered, only a very weak longitudinal 

gradient is present and the initial wave function   

Ψe-11i(θp-11i,θM-11i,P11i)=Ψe-11i(θp-10,θM-10,P10) 

is unchanged from that of Ψe-10. However, as the electron Ag atom system 

has a sudden encounter with the high longitudinal gradient ∂yB within 

segment 11, the Qe criterion is reached and exceeded. A rapid condensation 
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process produces an occupied δ-form spinor oriented along 0°. The notation 

θδ on any segment specifies the orientation of the δ-form spinor generated 

by a condensation process and represents either 0° or 180°. Since θp-11i=θp-

10<90°, θδ-11f=0°. The final wave function within segment 11 is 

Ψe-11f(θδ-11f,P11f)=Ψe-11f(0°,cos2(θp-10 /2)).  

For the present example of an incident θp-10<90° on segment 10 we noted 

above that during the projective condensation on segment 11 the occupied 

δ-form spinor aligned to +B at 0° retains a P11f=cos2(θp-10 /2) fraction of the 

P=1 probability (integrated wave intensity) that had been on the 5s orbital 

wave of Ψe(10,θp-10). That leaves a probability on Ψe-11f of P11f=cos2(θp-10 /2).  

The remaining P=sin2(θp /2) fraction of the incident P10=1 probability is 

projected onto a complementary, orthogonal empty δ-form spinor aligned to 

–B. The resultant empty δ-form spinor that exits segment 11 is identified as   

ΨD1-11f(θD1-δ-11f,PD1-11f)=ΨD1-11f(180°,sin2(θp-10 /2)).  

DARK WAVE: The “D1” subscript on ΨD1-11f signifies that this entity is an 

empty “dark” wave and that it is the first one generated in the process of the 

transit of the Ag atom through the SGE magnet. The quantities θD1-δ-11f and 

PD1-11f are subscripted by D1 to distinguish them from the respective 

quantities θδ-11f and P11f on Ψe-f. The D1 empty wave is given the alternative 

assignation of a dark wave since a typical particle detector would not readily 

measure its impact. 

The oppositely aligned δ-forms are momentarily physically contiguous at the 

completion of projective condensation within segment 11 however the 

longitudinal gradient decelerates the occupied δ−form spinor and its coupled 

Ag atom with respect to the dark δ−form spinor which continues as a 

separated, free entity at substantially the same velocity as that of incident Ag 

atom on the initial segment 10. The D1 dark wave has the same velocity as 

that of the electron Ag atom system at the completion of projective 

condensation.  

The dark wave, moving at some velocity v<c, constitutes a mass-bearing 

entity. That mass is proportional to the probability P associated with the dark 

wave. The wave-associated mass is a property independent of the presence 

or absence of a particle-like entity. For example, the segment 10 initially 
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occupied wave with P=1 has some mass me-w that is much less than the 

mass me associated with the electron, i.e. 

me-w<<me.  

A dark wave with a probability P=sin2(θp /2) extracted from that initial 

occupied electron wave unit probability has a mass 

mD-w=P me-w 

        =sin2(θp /2) me-w  

After that extraction 

me−mD-w=me−sin2(θp /2) me-w   

is the remaining mass associated with the electron.) 

OCCUPIED WAVE: We continue here with a detailed examination of the 

electron Ag atom system as it exits segment 11 as an occupied δ-form spinor 

along +B and enters the subsequent segments. For segment 12, where the 

longitudinal gradient increases beyond that of segment 11, Qe is exceeded. 

The continuous ∂tB over segment 12 can be modeled as repetitions of 

sudden ΔB increments over short Δt increments. These repetitions maintain 

the occupied δ-form along +B and the magnetic moment μe along −B. 

Consequently, 

Ψe-12(θδ-12,P12)=Ψe-11f(θδ-11f,P11f) 

                        =Ψe-12(0°,cos2(θp-10 /2)).  

DARK WAVE: Concurrently, the dark δ-form spinor ΨD1-11f(180°,sin2(θp-10 /2)) 

exiting segment 11 enters segment 12, unchanged as ΨD1-12(180°,sin2(θp-

10 /2)), where it is identified as “D1” on segment 12 in the exaggerated Fig. 

3.9 depiction of the respective trajectories through the SGE magnet. On 

segment 12 an “e”, retarded relative to D1, represents the occupied δ-form 

of the Ψe-12 electron Ag atom system Ψe-12. The retardation separation 

increases as the two entities traverse the remainder of segment 11, all of 

segment 12 and part of segment 13 because of the continued longitudinal 

gradient deceleration of the electron Ag atom system. The δ-form is 

maintained for both entities because Qe is continuously exceeded over those 

same segment regions.)      
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The electron Ag atom system enters segment 13 as  

Ψe-13i(θδ-12,P12)=Ψe-12                        

                        =Ψe-13i(0°,cos2(θp-10 /2)).  

and passes through an inflection of the field where the longitudinal gradient 

suddenly decreases. At some point in this segment ∂tB falls below Qe and 

the occupied δ-form spinor begins to evolve back to a uniform amplitude 

coherent spin structure wave over the 5s orbital. This evolution is an 

emission process of the δ-form spinor in which the θp-13f for the orbital wave 

spin structures is the polar orientation of a random member of a 0° 

polarization ensemble. Nevertheless, that new θp-13f<90° as was the incident 

value of θp-10 on segment 10. The continued presence of the very substantial 

B along 0° ensures that the magnetic moment μe remains along −B during 

the disruption of spinors transitionally evolving from δ-form back to a uniform 

amplitude coherence wave of spin structures on the 5s orbital, but with 

P=cos2(θp-10 /2), as the end of segment 13 is reached. That final wave 

function on segment 13 is represented as 

Ψe-13f=Ψe-13f(θp-13f,θM-13f,P13f) 

         =Ψe-13f(θp-13f,0°,cos2(θp-10 /2)). 

DARK WAVE: The free D1 empty δ-form spinor enters segment 13 in its 

segment 12 state.                                            

ΨD1-13i=ΨD1-12                        

           =ΨD1-13i(180°,sin2(θp-10 /2))  

and evolves to a free, Gaussian empty wave packet 

ΨD1-13f(θD1-p-13f,PD1-13f)=ΨD1-13f(θD1-p-13f,sin2(θp-10 /2)) 

after passing through a point at which ∂tB<Qe. This evolution is an emission 

process of the D1 δ-form spinor in which the θD1-p-13f>90° for the orbital wave 

spin structures is the polar orientation of a random member of a 180° 

polarization ensemble. Probability is maintained in the emission process 

giving  

PD1-13f=sin2(θp-10 /2) 

for the free empty Gaussian coherence wave of spin structures.  
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OCCUPIED WAVE: As the electron Ag atom system enters segment 14 the 

5s orbital wave continues throughout that segment as the uniform amplitude 

coherence wave of spin structures that exited segment 13 with 

Ψe-14u=Ψe-13f 

         =Ψe-14u(θp-13f,0°,cos2(θp-10 /2)). 

From a measurement perspective that wave of spin structures is still in a 

directionally quantized spin up state since the particle-like electron resides 

on a spinor aligned with +B and μe is then aligned along –B. On segment 14 

there is no consequential longitudinal gradient and B(y)≈104 gauss. The apex 

ridge geometry of the “lower” pole of the magnet produces a transverse 

gradient ∂zB≈−105 gauss/cm on the segment 14 beam path. In the SGE there 

is an observed Δz=+0.01 cm deflection of the electron Ag atom system after 

traversing the ~3 cm segment 14 beam path. That upwardly deflected path 

is identified as segment 14u to differentiate it from segment 14 which is a 

rectilinear extension of the previous segments. Over the length of segment 

14 the field along +z has changes by 

ΔB= Δz ∂zB 

     ≈+0.01 cm (−105 gauss/cm)  

     ≈−103 gauss. 

At the beginning of the segment 14u path the electron Ag system is in a low 

energy state  

Ei= −μe Bi 

   ≈ −10−20 104 

   ≈ −10−16 erg 

because of the anti-alignment of μe and B. 

At the end of segment 14u the energy of the system is 

Ef= −μe Bf  

    =−μe (Bi+ΔB) 

    ≈ −10−20 (104−103) erg 

giving an energy change  
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Ef−Ei≈ +10−17 erg. 

This positive result represents an energy increase of the system unlike the 

two energy losses incurred in segments 11→13. Consequently, the system 

absorbs 10−17 erg from the SGE magnetic field over the segment 14u 

traversal. That energy is physically manifested as a momentum along +z of 

the system.  

It is of some interest to observe that the 10−17 erg energy gain associated 

with the deflection, that constitutes the basis for SGE measurement of 

directional quantization, is smaller by an order of magnitude than the kinetic 

energy loss of 10−16 erg that the system incurred as it traversed the 

longitudinal gradient in segments 11→13. However, from an experimental 

point of view the longitudinal gradient is of little utility in demonstrating 

directional quantization in the original SGE for several reasons. The 

directionally quantized electron Ag atom systems emerging from segment 13 

are not physically separated on different trajectories so energy measurement 

would have to be employed to differentially distinguish the differing kinetic 

energies of the spin up and spin down states. Available detector energy 

resolution of 0.01% was (and still is) not achievable and the energy 

distribution of the incident Ag atoms would in any case totally obscure the 

0.01% longitudinally induced energy increments. And finally, even if 

adequate energy discrimination were possible, the lack of physical 

separation of the spin states would require a very low beam density to permit 

individual energy measurement of each Ag atom. 

Rabi, however, was able to demonstrate directional quantization with a 

longitudinal gradient by the insight that an oblique trajectory of the beam 

through that gradient would translate the resultant energy differential into a 

measurable deflection that provides the beam separation characteristic of 

directional quantization. [385] 

In the following the respective dispositions of the dark waves and the 

occupied waves are separately and alternately tracked:  

DARK WAVE: Over the course of segment 14 the free empty Gaussian wave 

packet represented by 

ΨD1-14=ΨD1-13f 

          =ΨD1-14(θD1-p-13f,sin2(θp-10 /2)) 
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continues to further separate along the y axis relative to the electron Ag atom 

system on segment 14u as shown in Fig. 9 despite the lack of a ∂yB gradient 

retarding the latter. This further separation occurs because of the momentum 

loss already incurred by the electron Ag atom system in previous segments 

where a significant ∂yB was present.  

OCCUPIED WAVE: As the electron Ag atom system exits segment 14u and 

first enters the transitional segment 15u the wave function is initially   

Ψe-15u i=Ψe-14u. 

Transitional segment 15u is inclusive of an inflection of the magnetic field 

over which the relatively negligible ∂yB gradient suddenly changes to a large 

negative ∂yB while conversely the high transverse gradient ∂zB decreases to 

a negligible value. As a consequence, in the sudden encounter of the uniform 

amplitude 5s coherence wave of spin structures with the segment 15u ∂yB 

gradient, the Qe directional quantization criterion is reached and exceeded 

causing the wave to undergo a condensation process closely analogous to 

that in transitional segment 11. In that process the probability of the occupied 

δ-form spinor is reduced by a factor of cos2(θp-13f /2) as a result of the 

segment 15u projective condensation. That leaves a probability 

P=cos2(θp-13f /2)∙cos2(θp-10 /2) 

on the final occupied δ-form 

Ψe-15u f(0°,cos2(θp-13f /2)∙cos2(θp-10 /2) 

exiting transitional segment 15u. 

DARK WAVE: In the segment 15u condensation process the electron wave 

loses a probability  

ΔP=cos2(θp-10 /2)−cos2(θp-13f /2)∙cos2(θp-10 /2) 

     = sin2(θp-13f /2)∙cos2(θp-10 /2).  

That ΔP is manifested as the probability PD2-15u f of a second dark (empty) 

wave entity “D2” that is generated in the same manner as D1 in transitional 

segment 11. Accordingly, 

ΨD2-15u f(θD2-δ-15u f,PD2-15u f)=ΨD2-15u f(180°,sin2(θp-13f /2)∙cos2(θp-10 /2)).  

represents the D2 exiting segment 15u as a free empty δ-form spinor. 
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OCCUPIED WAVE: There are minor differences to be noted with respect to 

the segment 15u process compared to that of 11. The ∂yB gradient 

encountered in segment 15u is negative rather than positive. However, as 

noted earlier the Qe criterion is based upon the temporal magnitude of 

magnetic field change and not the sign of that change. Additionally, since μe 

is already anti-aligned with B as the uniform amplitude spin structure wave 

entered segment 15u, the orientation of μe is unchanged as condensation to 

δ-form concludes within segment 15u. Effectively, the directional 

quantization that was induced in segment 11 is still present throughout 

segment 15u. Because the longitudinal gradient ∂yB is negative in the distal 

region of segment 15u, the electron Ag atom system is accelerated relative 

to D2 and the two entities progressively separate.   

DARK WAVE: The free empty Gaussian wave packet D1 on segment 14 

enters transitional segment 15 as 

 

ΨD1-15i=ΨD1-14 

          =ΨD1-15i(θD1-p-13f,sin2(θp-10 /2)) 

and condensation within transitional segment 15 as Qe is exceeded 

generates two contiguous δ-forms  

ΨD1d-15f(180°,sin2(θD1-p-13f)∙sin2(θp-10 /2)) 

and 

ΨD1u-15f(0°,cos2(θD1-p-13f)∙sin2(θp-10 /2)) 

respectively representing the dark pair D1d and D1u. Importantly, the pair 

remains contiguous as it propagates in the distal region of segment 15 with 

constant velocity, dynamically unaltered by the increasing magnitude of the 

longitudinal gradient ∂yB.   

OCCUPIED WAVE: By analogies to the analyses to this point we can 

immediately construct the electron Ag atom system wave functions for the 

remaining segments 16, 17, and 18 modified only by minor subsidiary 

considerations. Similarly, the wave functions for the dark D1d, D1u, and D2 

entities can also be immediately constructed.  
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The sequence of electron wave functions for the electron Ag atom system 

are the occupied δ-forms on the 5s orbital  

Ψe-16u=Ψe-15u f 

         =Ψe-16u(0°,cos2(θp-13f /2)∙cos2(θp-10 /2) 

and  

Ψe-17u i=Ψe-16u 

           =Ψe-17u i(0°,cos2(θp-13f /2)∙cos2(θp-10 /2) 

Transitioning in segment 17 to a uniform occupied wave on the 5s orbital 

wave 

Ψe-17u f(θp-17u f,θM-17u f,cos2(θp-13f /2)∙cos2(θp-10 /2)) 

that continues in the same state on segment 18 as 

Ψe-18u(θp-17u f,θM-17u f,cos2(θp-13f /2)∙cos2(θp-10 /2)). 

Segment 17 is associated with an emission process generating a polar 

orientation θp-17u f analogous to the segment 13 emission process. However, 

in the segment 17 process the evolution from a δ-form spinor to spinors 

forming spin structures occurs in a negligible B field unlike the segment 13 

emission process B field. As a consequence, the electron, initially located on 

the 0° oriented δ-form spinor, is disrupted by the spinor evolution process 

and randomly moves to a constituent spinor at θM-17u f (where μe has a polar 

orientation θM-17u f+180°) since the associated energy of μe•B~0 for negligible 

B.     

Over the total course of transit the electron Ag atom system is continuously 

directionally quantized from the distal region of segment 11 to the proximal 

region of segment 17. As a consequence of the longitudinal gradient ∂yB, the 

system’s energy loss over the distal region of segment 11 to the proximal 

region of segment 13 is equal and opposite its energy gain over the distal 

region of segment 15 to the proximal region of segment 17. As a result, the 

system’s final velocity component along the y axis on segment 18u is 

substantially identical to its initial segment 10 velocity.  

DARK WAVE: Those energies are relevant to the system’s relative 

separation from extracted dark waves as depicted in Fig. 9. There is an 
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inclusive region extending from the distal region of segment 13 to the 

proximal region of segment 15 that is free of a significant longitudinal 

gradient. Over that inclusive region the decelerated system is increasingly 

retarded along the y axis relative to the dark D1, and a net retardation along 

the y axis is still present as the system and D1 reach segments 18u and 18 

respectively despite the system’s energy restoration. Concurrently, the 

system’s energy gain increasingly separates it from the dark entity D2 

extracted from the system in segment 17u as the two entities continue along 

segment 18u. 

The states of the D1d and D1u contiguous, anti-aligned dark δ-form spinors 

emerging from the distal region of segment 15 are the same as their 

respective states on segment 16  

ΨD1d-16(180°,sin2(θD1-p-13f)∙sin2(θp-10 /2)) 

and 

ΨD1u-16(0°,cos2(θD1-p-13f)∙sin2(θp-10 /2)) 

and similarly as they enter transitional segment 17   

ΨD1d-17i=ΨD1d-16 

and 

ΨD1u-17i=ΨD1u-16. 

D1d and D1u continue to propagate contiguously in segment 16 and in the 

proximal region of transitional segment 17 since they are both unaffected by 

∂yB.  

As D1d and D1u transit through <Qe within segment 17 the two δ-forms 

resolve back toward a single evolving dark wave packet in the distal region 

of segment 17 with a final resultant on that segment 

ΨD1-17f(θD1-p-13f,sin2(θp-10 /2)) 

and on segment 18 an equivalent 

ΨD1-18(θD1-p-13f,sin2(θp-10 /2)). 
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These resultant forms are identical to ΨD1-13f from which D1d and D1u were 

derived. Accordingly, the resultant state of the two resolved δ-forms is 

appropriately identified as the dark D1. 

This entire process of the δ-form resolution has strong LR analogs in the 

present analyses of particle states and also in the LR analysis of photon 

states.   

The resolution of orthogonal δ-forms into a fully formed wave  

ΨD1d-16(180°,sin2(θD1-p-13f)∙sin2(θp-10 /2))+ΨD1u-16(0°,cos2(θD1-p-13f)∙sin2(θp-

10 /2))→ΨD1-17f(θD1-p-13f,sin2(θp-10 /2)) 

occurs as the two contiguous δ-forms pass from a region with >Qe to a region 

with <Qe. This transition is the direct analog of the time-reversed process     

Ψe-11f(0°,cos2(θp-10 /2))+ΨD1-11f(180°,sin2(θp-10 /2))→Ψe-11i(θp-10,θM-10,1) 

in which two contiguous, orthogonal δ-forms pass from a region with >Qe to 

a region with <Qe and resolve to a fully formed wave.   

The present resolution of orthogonal δ-forms also has a direct LR analog 

with photon traversal of a loop such as opposed calcite crystals. In that 

traversal we have shown that a loop-incident photon is split onto two 

separate paths baring respectively an occupied δ-form wave and an 

orthogonal, empty (dark) δ-form wave. At the exit face of the loop the 

resultant of the two waves combining is a fully formed photon wave packet 

with an arc bisector orientation θa and a probability identical to that of the 

incident photon. If the incident photon is replaced by an incident empty wave 

packet, the resultant wave packet exiting the loop is identical to that incident 

empty wave packet.    

The progression of D2 beyond segment 15u is straightforward. Because 

ΨD2-16u=ΨD2-17u i=ΨD2-15u f, 

the wave functions for segments 16u and 17u i are respectively 

ΨD2-16u(180°,sin2(θp-13f /2)∙cos2(θp-10 /2)) 

and 

ΨD2-17u i(180°,sin2(θp-13f /2)∙cos2(θp-10 /2)).  
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Transit within segment 17 results in evolution to a full wave packet as an 

emission process yielding  

ΨD2-17u f(θD2-p-17u f,sin2(θp-13f /2)∙cos2(θp-10 /2)) 

and, on segment 18, an identical 

ΨD2-18u(θD2-p-17u f,sin2(θp-13f /2)∙cos2(θp-10 /2)) 

where θD2-p-17u f is the orientation of a random member of a 180° polarization 

ensemble. 

3.8 CONCLUSIONS 

The above analysis of LR wave states in the SGE shows that its most notable 

characteristic, that of directional quantization, occurs before the electron Ag 

atom system enters the SGE magnet perimeter. 

For LR, the condensation process of electron wave packets entering the 

longitudinal gradient field of the SGE magnet is analogous to the 

condensation process of photon wave packets entering a two-channel calcite 

polarizer. However, from the perspective of classical physics, the sorting of 

photons onto one or the other of the calcite output channels presents no self-

evident conundrum unlike the sorting of electrons (and their coupled atoms) 

onto one or the other of two discrete SGE magnet output channels. For the 

SGE, that conundrum arises because of the apparent absence of an applied 

force and an energy exchange mechanism with regard to the electron’s 

magnetic moment. 

A possible solution to this conundrum was considered in a paper by Einstein 

and Ehrenfest [382-383] shortly after SGE. They postulated that transitions 

occurred to up or down quantum states as the atoms transited the high 

vertical gradient region within the perimeter of the magnet poles but 

concluded that the quantum transition times were far too slow to account for 

the observed results of SGE.        

That unresolved conundrum was avoided in PI by assigning a probabilistic 

nature to entities such as an electron whereby a measurement process 

conducted along a particular magnetic field axis ad hoc provides a quantized 

up or down state alignment. In this regard the SGE results are widely 
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recognized as constituting a phenomenon that distinctly departs from 

classical physics. 

In contrast, in the LR representation of SGE the electron’s final magnetic 

moment alignment in a particular SGE apparatus is fully deterministic from 

the instant the atom leaves the SGE beam source. In LR the electron is an 

objectively real entity that has some definite polar θp orientation of its spin 

structures as it leaves the source. Identifying only that θp is >90° or <90° then 

fully determines the final magnetic moment alignment. As the atom and its 

appended electron approach the SGE apparatus, a high longitudinal 

magnetic gradient exterior to the SGE magnet is suddenly encountered. It is 

that sudden encounter that begins the process of projective condensation  

The process of magnetic moments rotating to alignment with the magnetic 

field is independent of the transverse high gradient magnetic field within the 

perimeter of the SGE magnet poles. In LR the rotation is treated semi-

classically arising from “quantum” forces that occur during projective 

condensation of the wave structure upon suddenly encountering a significant 

longitudinal gradient outside the magnet pole perimeter where the transverse 

gradient field is negligible but the longitudinal gradient field is consequential.  

The resultant spin up and spin down “states” of the magnetic moments are 

then recognized as distinct from formal quantum states such as those 

associated with atomic orbitals.    


