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Agreement with quantum theory and experiment exists for locally real models violating the apparently
plausible additional assumptions of Bell inequalities subject to the use of low-efficiency detectors. A lo-
cally real optical hidden-variable model of this class is constructed here with asymmetric correlated pho-
ton pairs from the physical basis of Malus’s law. The model introduces no arbitrary constants, naturally
violates factorization and no enhancement, predicts a Jcos’d joint probability for high-efficiency detec-

tors, and is testable with currently available low-efficiency detectors.

PACS number(s): 03.65.Bz

A diversity of local realities has been represented by
hidden-variable theories [1] that violate the additional as-
sumptions associated with Bell’s inequalities [2-4].
These theories agree with performed experiments using
low-efficiency detectors [5]. This diversity and the ap-
parent plausibility of the additional assumptions motivate
the present work.

A model of local reality is developed here with the vac-
uum field treated as a collection of harmonic oscillators
in random ground-state motion. Photons comprise a set
of propagating planar Fourier ground-state wave packets
on which the oscillators are in coherent ground-state
motion. These planar packets are contiguously arrayed
about the propagation axis, each occupying a discrete
infinitesimal angular arc § << (Fig. 1). A large 6 is de-
picted in the figures for clarity; however, the functional
quantities developed in the model remain valid as 8 —0.

Collectively, a photon’s packets subtend an arc of
specific angular magnitude about its propagation axis.
The arc bisector defines the orientation angle A of a pho-
ton in the laboratory reference frame K. (Planar packet
bidirectionality gives orientation a bivalue of A and
A+m.) The maximum permissible arc magnitude is 7/2
and this particular case is defined as a “full-complement”
photon.

In the interests of conciseness, the underlying field
structure of the model, which is compatible with the for-
malism of quantum theory, is deferred here, and the
essentials of the model are presented in their most com-
pact form as a hidden-variable theory. In this context,
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the arc magnitude and orientation of a photon constitute
the requisite hidden variables.

In the model, an analyzer with its polarization axis
oriented at 6, in K transmits a photon only when any re-
gion of its arc is aligned with that 8,. Then the transmis-
sion probability is J for a randomly oriented full-
complement photon y (and, e.g., ; for a randomly orient-
ed y with a /3 arc). If no portion of the arc is aligned
with the polarization axis, all packets collapse and the
photon is absorbed. Conversely, a transmitted photon
collapses down to the single packet aligned with the po-
larization axis as it enters the analyzer. This single-
packet “generator” photon v,, aligned with the polariza-
tion axis, propagates in the analyzer and emerges at the
analyzer exit face as a full-complement “emission” pho-
tony,.

The energy associated with a photon resides as an exci-

-

K

FIG. 1. Schematic view of a full-complement photon y in-
cident on an analyzer 4. The depicted y is transmitted since a
constituent packet is aligned with the analyzer’s polarization
axis.
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tation state on one of the oscillators of one of the constit-
uent packets. When a photon incident on an analyzer is
transmitted, the excitation transfers to the internally
transmitted single packet of v, during the collapse of the
other packets. The excitation subsequently transfers to
one-of the packets of the full-complement y, photon
emitted at the analyzer exit face.

The distribution of the possible orientations of that
emission photon y, is stochastically related to the
(analyzer-dependent) orientation of the generator photon
Y- An emitted y, is a random member of an ensemble
{7.}. The ensemble is given by the curvilinear envelope
cos?A' for 0<A' <7/2, 1—cos?\’ for —w/2 <A’ <0, and
connecting horizontal segments (Fig. 2) where the
analyzer axis and its internally propagating single-packet
photon y, have an orientation defined to be A'=0 in the
photon reference frame K’ of y,. The ensemble distribu-
tion in Fig. 2 is chosen in the model because it uniquely
weights the ensemble member orientations by cos’A’
about the orientation of v, and suffices to provide a local
basis for Malus’s law. (A subsequent analyzer at A'=6
transmits cos’d of the ensemble members.)

Correlated photons are treated analogously as pairs
consisting of a “generator” photon ¥ and its stochasti-
cally dependent “emission” photon ¥ ;. The y; and the
v g are asymmetric with respect to structural proportion.
The y is distinctive in having a 7/3 arc of packets,
whereas the y; (and in general other y’s such as uncorre-
lated photons as well as the y,) have a full complement
/2 arc. The y; photons then comprise a packet set £ as
numerous as that of a full-complement set. The v, is
physically confined to a single-packet structure by the
analyzer, whereas this constraint is absent for the analo-
gous Y. (The particular choice of a 7/3 arc for y is
examined below.)

A y(A), upon leaving a correlated photon source S,
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FIG. 2. Angular relationship of a single packet y,, propaga-
ting in an analyzer, and its associated ensemble {y,}, shown in
the reference frame K’ of v,. The particular y, emitted at the
analyzer exit face in a random member (row) of {y,].

may assume any orientation A in K with equal probabili-
ty. However, it is more convenient to transform to the
generator photon reference frame K’ where the y ; orien-
tation is fixed at A'=0. Associated with y; is an ensem-
ble {y} comprising members y ;(A'), where A’ identifies
the orientation in K’ of each member (Fig. 3). The partic-
ular yg(A') emitted with a y, is a random member of
that {y;}. In K’', an analyzer orientation 8, may assume
any value of A’ with equal probability since y is fixed at
A'=0. The probability of transmitting a random {y ]}
member through an analyzer set at some A’ (e.g., =0p) is
given by

3/mNw/3—N)6/m,
3/m, (NIZ<7/6

(3/m)Nw/3+A)6/7,
0, w/35 M| <2773 .

/6N, <7w/3

Pe(A)= — 73N < —1/6

(1)

The 3 /4 factor provides for necessary normalization.
The corresponding probability of ¥ being transmitted
by a different analyzer at some A’ (e.g., =0, ) is

1, [AM|<7/6

Pe(AY= 0, m/6< 1| <57/6 .

)

A gedanken EPR (Einstein-Podolsky-Rosen) [6] corre-
lated photon experiment may now be performed. The re-
quisite apparatus comprises a correlated photon source S
situated between a polarization analyzer 4; on the left
and a polarization analyzer A4y on the right. Each
analyzer is followed by an associated detector. The coin-
cidence rate for the experiment is then

R(6)=1R,f(1) fAPG(GL)PE(BR)dk’ 7

—i—%RTf(%)[fAPG(OR PO, ()

where 6=60, —0, is the relative angular displacement of
Ap and A;. The analysis is performed in K'. Idealiza-
tions are made with respect to correlated photon produc-
tion (e.g., energy equivalence), trajectory correlation, and
analyzer performance.

The factors in the first term on the right are examined.
The 1 factor expresses the probability that v travels to
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FIG. 3. Packet distributions of the y; correlated photon and
its associated ensemble {y} in the angular reference frame K’
of yg. A yg mate to a y¢ is a random row in {yz}. Left and
right analyzers at 6; and 6 for all A’ in K’ give transmission
probabilities (shown here, ¥ ; moving left and ¥ ; moving right).
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the left and y 5 to the right for this term. R is the true
production rate of correlated photons from S. The factor
f is the fractional angular acceptance cone of the
analyzer-detector sets. The 1 factor is the probability of
¥ ¢ being transmitted by analyzer 4;. The correspond-
ing probability of an associated ¥ being transmitted by
Ag set at 8z =A', subject to the constraint of y; being
transmitted by A4, set at 0;, is given by the integral of
Py and Prp. However, this constraint demands that the
integration variable of P; be displaced by 6 since
0=0x —0,. Then for the integral under consideration,
0; =A’—8 and (2) becomes

1, |[A—6/<n/6

PN =0)= 1o 1/6<|N—6]<57/6. )

Integration of (1) and (4) over [ —# /2,7 /2] may now be
performed (Fig. 3). The nonzero contributions to the in-
tegral resolve to that range A (dashed line) for which 6,
intercepts the arc of y,, and 6, simultaneously inter-
cepts the nonzero portion of the distribution Pg(1') (1) of
{yg}. Defining C(0) as the integral in the first term of
3),

3 pas6 3 protus6 | 6
0)=— dA +— ——=A|=dN
c19) wfefn/e 7Tf‘rr/6 3 T
30 |
=l—-|—1, 5
T
3 pas6 3 pos3 | 6
0)=— A+— ——A"|—dMN
¢ 7Tf9—‘n'/6d 1Tf‘n'/6 3 T
—1.25-39 (6)
™
3 pru/3 T 6
0)=— ——A|—dMA
i) ﬂfeﬂr/e 3 T
0 36 ?
=2.25—9—+ =, (7)
T T
respectively, for 0=<6=w/6, #n/6<6=<w/3, and

/3= 0=m/2. Examination of C(8) over [0,7/2] shows
excellent agreement with cos?6, i.e., C(8)=~cos’6. The
particular choice of a 7/3 arc for y; maximizes this
agreement. This maximized agreement is, in turn, re-
quired in the model that treats correlated photon ensem-
bles {y ;! as physically analogous to the analyzer ensem-
bles {y,]. In this analogy the cos’6 proportion of all
{7.} members having a packet at 6 from the single pack-
et v,, is equivalent to the C(6) normalized proportion of
all {y 5] members having a packet at 8 from a particular
packet in y; integrated over the multiple y; packets. As
a result, the 7/3 arc of v is a derived constant.

With 7 as detector efficiency for full-complement pho-
tons and noting that y; and y 5 are both full complement
after transmission through their respective analyzers, the
final factor is 7%

The second term on the right of Eq. (3), relating to y
propagating to the right and y; propagating to the left,

is equivalent to the first term by symmetry. It follows
that

R(O)=1R fn*C(0) . (8)
Without the analyzers, the detection rate is

Ry=Rrfngm , 9

where 7 is the detection efficiency for the y ;. The ratio
of Egs. (8) and (9) is

R(6) _ 7’C(6) (10)
R, 3nem

The arc magnitude of a photon presents a propor-
tionate cross section of interaction. Detection efficiency
is linear to this magnitude and 75 =327. Eq. (10) reduces

to
R(6) _

1
7
RO

C(0)=1cos’d (11)

which is the familiar form of the joint probability.

Arc-dependent detection efficiency is a significant out-
come of the model. The y and y g, equal in energy, nev-
ertheless exhibit detection efficiencies linearly propor-
tionate to their respective arc magnitudes (“linearity”).

Equation (11) expresses the mutual agreement of quan-
tum theory and performed experiments with the model.
However, this agreement is comparable to that obtained
with other locally real models using low-efficiency detec-
tors [1]. The aspects that distinguish the present model
from those models are examined below.

The computation of the joint probability Eq. (11) is
critically dependent upon linearity, which is taken to be
the defining characteristic of low-efficiency detectors.
Upon considering progressively improved detectors, it is
evident that as 775 for y; photons approaches unity, 5
must also converge to unity. The consequent departure
from linearity (i.e., from low efficiency) results in 7 > 27
for which

R(6)
R,'

<1C(0)=1cos’0, (12)

and the model predicts that quantum theory will be at
variance with experiment. This variance necessarily must
exist at least for 7, >3% since linearity would require
n>1. Then the maximum limit of low efficiency is
N =% and p=1. In this limit, a ¥4,y 5 flux gives a mix-
ture efficiency

T =L+ =12 +1)=0.83 . (13)

This important result of the model has been derived in
the general case as the requisite efficiency for testing lo-
cally real models that are in agreement with quantum
theory subject to the use of low-efficiency detectors [7].

Further progressive detector improvement to the ex-
treme limit of 77; — 1 requires complete convergence with
1n— 1. In this limit of high-efficiency detectors, the model
predicts that Eq. (10) will be

R(6)

R =1C(0)=Lcos’d . (14)
0
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Inequality (12) then has a minimum value set by Eq. (14).
These results represent testable consequences of the mod-
el when higher efficiency detectors are used.

However, the model also can be tested with existing
low-efficiency detectors. For example, if the EPR ap-
paratus is used without analyzers, quantum theory pre-
dicts

R, =Rrfm, R0=RTfn2

as the observed singles rate at the left detector and the
observed coincidence rate, respectively. The correspond-
ing quantities predicted by the model are

R, =Rrfny=Rrf3(ne+n)=0.83Rrf7,
Ry=RrfnGn=0.6TRf7’

[see Eq. (13)]. The disparate ratios
[Ro/Rplor=mn [Ro/Rp]mess=0.87 (15)

and calibration of detector efficiency 7, independently
performed using a pure full-complement photon source,
|

permit experimental exclusion of quantum theory or the
model.

In the context of the model, it is instructive to examine
the  factorization  assumption  [3] P x(A,0)
=P, (A, 0. )Pgr(A,0y), where =0 —0;, which gives
the familiar form of Bell’s equation [2]

Prr(0)= [ p(A)P (A, 0)dA
= [p(MPL(A,60,)PR(1,65)dA . (16)

Although (16) and (3) differ in that they are computed in
K and XK', respectively, the particular choice of reference
frame is not significant since =80z —60; is frame in-
dependent. Furthermore, the various factors in (3) readi-
ly are grouped to give analogous forms to p(A) [normali-
zation factor in (1)] and left and right singles probabilities
in the integrand of (16). Nevertheless, there remains a
fundamental incompatibility between (16) and (3). The
photon detection probability on the left, 7, (A, 6, ), is the
sum of detection probabilities for leftward-moving y’s
and y p’s [with a similar expression for Pg(A,0z)]. Then

Pr(0)= [ p(M[Pr (A, 0,)+Pp 5(A,0,)][Pr 5 (A0 )+ Pr (A, 1dA
= [ p(MPy, (A0, )P (A, 0 )dA+ [ p(MPL £(A,6, )P (A, 05 )M
+ [ (MNP (4,6, )Pr 6 (1,08 A+ [ p(MIPy (A0, )Pp 5(A, 0, )dA .

The first two integrals on the right are comparable to
those in (3), but the last two are physically inadmissible in
the model in that they relate to correlated pairs of two
ys’s and two ¥ ’s, respectively. The model, as a conse-
quence of the asymmetry of correlated photons, does not
admit factorization (nor does quantum theory [3]) and is
" not subject to Bell’s equation (16).

The model also provides a natural violation of the ap-
parently plausible no-enhancement additional assumption
[3]. Using low-efficiency detectors, an incident ¥ pho-
ton (7/3 arc) is detected with an efficiency of 7. If an
analyzer is then interposed with its polarization axis

f

oriented to transmit a y, that y; collapses to a single
packet 7, in the analyzer and emerges asa y, (7/2 arc).
The resultant detection efficiency is naturally enhanced
up to 7 by the presence of the analyzer.

The model, in addition to providing a rational physical
basis for violating the additional assumptions of factori-
zation and no enhancement, is distinguished from the
diversity of other possible models of local reality (e.g.,
Ref. [1]) by construction from Malus’s law without any
arbitrary constants and the testable consequences of Egs.
(12), (14), and (15).
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