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Locally real states of photons and particles
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A locally real representation is derived from projections in Hilbert space without arbitrary constants. The
inherent enhancement property of the resultant states removes restriction by Bell’s theorem. Exact agreement
with quantum mechanics is demonstrated by explicit calculations of photon transmission in Malus’s law, joint
detection probability for correlated photons, spin % particle transmission through successive Stern-Gerlach
analyzers, and joint detection probability for correlated spin % particles. The representation is experimentally

testable with respect to quantum mechanics.
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I. INTRODUCTION

The rapid evolution of the probabilistic interpretation of
quantum mechanics from 1925 to 1927 is associated with a
departure from the classical principles of realism. In an early
attempt to reconcile quantum mechanics and classical prin-
ciples, de Broglie proposed a reality-based representation at
the 1927 Solvay congress [1], but this representation was
generally rejected by proponents of the probabilistic interpre-
tation. The tenets of the probabilistic interpretation were
crystallized in 1935 by Bohr’s response [2] to the analysis of
Einstein, Podolsky, and Rosen [3] regarding the question of
quantum, theory’s completeness. Some years later, Bell’s
theorem [4], based upon apparently plausible assumptions,
substantially increased interest in the examination of admis-
sible locally real alternative representations by providing
testable criteria. The experimental results of such tests [5]
have widely been interpreted as a final validation of the
probabilistic interpretation. Despite these events, Popper
critically examined the probabilistic interpretation particu-
larly with respect to its philosophical basis [6]. Several re-
searchers, compelled by the firm belief that nonlocality is
incongruent with physical reality, have persisted in investi-
gating the boundaries of admissible local alternatives [7-23].

A particular hidden variable model of locally real photon
states was presented earlier which demonstrated agreement
with the probabilistic interpretation and performed experi-
ments for Malus’s law and for correlated photons [24]. The
model was shown to be independent of Bell’s theorem [4,25]
as a consequence of its inherent property of enhancement
and was testable. We proceed here from projections in Hil-
bert space with the derivation of a locally real representation
that yields photon states analogous to those of that earlier
model. A very closely related self-consistent derivation fur-
ther extends the representation to include particle states. The
resultant comprehensive locally real representation is shown
to be in exact agreement with quantum mechanics while pro-
viding testable consequences.

States for photons and for particles are deliberately con-
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structed with compatible notation and are presented in sub-
stantially self-contained sections in the interests of explicitly
elucidating the self-consistency of the respective derivations.
As we proceed, we may reasonably anticipate from the cal-
culational success of the quantum mechanical formalism that
mathematical analogs may arise in a locally real alternative.
Accordingly, any such analogs must be strictly defined as
locally real entities and not be imbued with any of the famil-
iar nonlocal probabilistic attributes of quantum mechanics.

A corollary to these concerns is that we must clearly dis-
tinguish the locally real representation from Bohm’s con-
struction [26]. Bohm basically retains the standard quantum
formalism which, together with a potential derived from that
formalism, yields a causal interpretation of quantum mea-
surement processes. The Bohm interpretation is appropri-
ately characterized as nonlocally real.

Correlated states and spatially separated superposition
states (e.g., two-slit interference [27]) are usually identified
as the most notable phenomena that necessitate the imposi-
tion of a nonlocal probabilistic interpretation on the underly-
ing standard quantum formalism. These phenomena certainly
represent particularly dramatic and self-evident manifesta-
tions of nonlocality in the probabilistic interpretation. How-
ever, the transmission of photons through successive polar-
ization-analyzers (Malus’s law) and the passage of particles
through successive Stern-Gerlach analyzers are both phe-
nomena well recognized as necessitating the invocation of
the probabilistic interpretation given the standard quantum
formalism. These phenomena are jointly categorized here as
analyzer emission processes.

In this regard, we first address these analyzer emission
processes from a locally real perspective and then proceed,
with benefit of hindsight, to correlated states which turn out
to be closely related. Both of these phenomena can be sub-
stantially described in the context of single channel analyzers
or, equivalently, two-channel analyzers with one blocked
channel.

Correspondingly, we defer a detailed locally real alterna-
tive to quantum mechanical spatially separated superposition
states, which follows directly and consistently from the basis
of analyzer emission presented here, but necessitates, in its

-complete form, the treatment of transmission through two-

channel analyzers with both channels open. The physical im-

©2002 The American Physical Society



STUART MIRELL

plications of the locally real representation alternative to
these spatially separated superposition states is a subject of
some considerable interest and experimental consequences
have been examined [28].

"The measurement results for photon and particle states
considered here are not in any way dependent upon ineffi-
ciencies imposed, respectively, on polarization and Stern-
Gerlach analyzers (distinct from their associated detectors).
Accordingly, we are free to treat these analyzers as idealized.

The phenomena we examine here, when represented
quantum mechanically, particularly characterize the tenets of
the probabilistic interpretation. We will abide by the general
convention in which that probabilistic interpretation is im-
plied when using the term quantum mechanics.

II. LOCALLY REAL PHOTON STATES
A. Introduction to photon states

Following the example of quantum field theory, we treat
the vacuum field as a collection of harmonic oscillators in
random ground state motion. The functional specification
®(z,t;b,) that we utilize here for a photon propagating
along the z axis is substantially equivalent to the wave func-
tion of the usual quantum formalism but represents in the
present context a wave structure consisting of a subset of the
(real) oscillators in coherent motion orthogonal to z. The
passage of ® through a local region is effectively a coher-
ence wave. that drives resident random ground state oscilla-
tors into transitory coherent (ground state) motion. A super-
position of constituent harmonic waves with a dispersion of
wave numbers k, gives ® its functional amplitude with re-
spect to the propagation axis as shown in Fig. 1(a). The
parameter b, is d coefficient that scales this amplitude. The
evaluation of ®*® provides a proportionate measure of the
density of oscillators in coherent ground state motion or-
thogonal to the propagation axis as a function of z,¢. Since ®
is not a probabilistic entity, there is no inherent requircment
to normalize ®*®.

For a specific photon emitted at =0 and propagating
along the z axis, the temporal and spatial evolution of ® is
substantially equivalent to that of the quantum mechanical
formalism with the explicit understanding that the wave
structure is a real entity.

®, defined on =0, is clearly descriptive of a dominant
aspect of the photon’s structure; however, the parameters
z, t, and b, provide no information regarding “polariza-
tion” properties. For a specific photon, this information is
contained in the variables A, and 6, defined in the plane
orthogonal to the propagation axis. The quantities A , and 6,
as well as b, are identifiable as “hidden variables.” How-
ever, we shall apply the term field variables instead, as more
appropriate in the full objective context of the locally real
representation.

We will necessarily have frequent occasion to assume this
objective perspective in which the field variables A, 6,,
and b., of a given photon are specified. This perspective is
permissible in a representation of real entities even though
subjectively (experimentally) we cannot have complete
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FIG. 1. Photon wave structure (a) represented by the associated
wave function amplitude along the z propagation axis rotated
through an arc A . The entire structure is scaled by an amplitude
coefficient b,,. A constituent planar wave packet of infinitesimal arc
& is shown near the plane of the y axis. Schematic representation of
a photon’s collective planar wave packets (b) viewed projectively
along the propagation axis, shows total arc span A, and orientation
of the photon (arc span bisector) 6, . Intersection of depicted A, arc
with an analyzer’s polarization axis, e.g., along the x axis, results in
photon’s transmission. ’

knowledge of the particular field variable values for any
given photon.

Objectively, the wave function of a specific photon is then
more completely specified as ®(z,£;A,,,6,,b,). In this re-
gard we define a planar wave packet as a subgroup of coher-
ent @ oscillators moving orthogonal to the propagation axis
in an infinitesimal angular arc § oriented at some particular
angle about that axis as represented in Fig. 1(a).

A given photon consists of a set of these planar wave
packets, all with a uniform amplitude coefficient b,. The
packets are contiguously arrayed about the propagation axis
and collectively subtend a finite angular arc A, as shown in
Fig. 1(a) and, schematically as a projective axial view, in Fig.
1(b). The magnitude of A, (=NJ for some integer N) and
the orientation of the A, bisector at some 6, are essential
field variables characterizing a particular photon. An orien-
tation at 6, is equivalent to ¢, + 7 because of the bidirec-
tionality of the planar packets. The two opposed arcs in Fig.
1(b) are then appreciated as representing the same set of
planar packets but with a relative 7 phase shift along the
propagation axis. In the consideration here of photon states
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and their measurement, it is convenient to treat the & of each
planar packet as a suitably small but finite angular increment.
Ultimately, as the limit 6—0 is applied while N—, A,
=N & remains constant and we see that the discrete planar
packet is purely a mathematical intermediary.

The general physical characteristics of @ emerging from
this construction are that all photons generated under experi-
mentally equivalent conditions have substantially identical
wave structures (to within an amplitude scale factor of b,)
with respect to z and ¢ dependence but differ in the fixed
values of A,, 0,, and b, associated with the angularly ar-
rayed wave packets of a particular photon.

We shall shortly demonstrate the relationship of the
A,, 6,, and b, field variables to the “polarization” of the
photon and to analyzer measurement of that polarization.
However, the primary task at hand is the derivation of the
underlying formalism that assigns particular field variable
values to emitted photons. This formalism generates a wave
function associated with an ensemble of photons defined at
the emission source at #<<0. The allowable A, and @, values,
in their proper frequency distribution, map to the members of
this ensemble. As a stochastic process, a random member of
the ensemble is emitted at t=0 with particular objectively
fixed values A, and @, giving an associated wave function
®(z,1;A,,60,,b,) for t=0. We shall see that any specific
emitted ensemble member is a real definable physical entity
with an objectively deterministic transmission outcome
through some distant polarization analyzer.

The energy quantum associated with a photon exists as an
excitation state on one of the constituent coherent ground
state oscillators. The excitation migrates on @ with an in-
stantaneous probability along the propagation axis propor-
tionate to ®*®. The excitation also migrates on the contigu-
ous set of wave packets with a random instantaneous
probability on any individual packet of the angular arc A .

The probabilities associated with the excitation locus on
the photon’s wave structure are readily shown to be indepen-
dent of the amplitude coefficient b,. The probability inde-
pendence on the set of the A, arc of packets is immediately
seen from the uniformity of b, on those packets. The prob-
ability independence along the propagation axis can be ap-
preciated by observing that the density of coherent oscilla-
tors given by ®*® is scaled by the particular value of b%/ for
that photon. However, this scaling does not alter the relative
likelihood of the excitation being at a particular z,7 on a
single spatially contiguous wave structure.

Conversely, for processes such as the intersection of spa-
tially separated wave structures, the relative value of b, on
each structure is critical to excitation dynamics in the result-
ant wave interference. Nevertheless, because we confine our
present considerations almost entirely to phenomena involv-
ing single channel analyzers, such spatially separated wave
structures do not arise and the specification of b, is largely
superfluous in that regard. Most significantly in the context
of the present paper, we will demonstrate that a photon’s
transmission outcome through an analyzer is also indepen-
dent of b,,. Accordingly, we will explicitly consider the am-
plitude coefficient 4., only when its inclusion contributes to a
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more complete understanding of the locally real structure.
Otherwise, the particular value of b, can, in principle, be
suppressed bere in our specifications of field variables.

In the locally real representation, it is the excitation that
provides us with a probe of the photon wave packet structure
of ® with particular regard here to z,# dependence. Various
measurement procedures applied to individual photons can
reveal the instantaneous value of a parameter such as posi-
tion z or wave number k, associated with the excitation as it
moves on the wave packet structure. Ultimately, after con-
ducting a large number of such measurements on similarly
emitted photons, a map of ®*® along the propagation axis
can be ascertained. The Az,Ak,, uncertainty on a real field is
seen as a manifestation of the classical relationship of ca-
nonically conjugate variables such as z,k,, in the construction
of a wave packet for which AzAk,~2m.

B. Analyzer emission of photons

From the perspective of local reality, the statistical distri-
bution of photon transmission outcomes through some dis-
tant analyzer A’ must originate at the emitting analyzer A.
We postulate that any particular photon emitted by analyzer
A is a random member of an ensemble of photons and seek a
mathematical representation of this ensemble consistent with
the physically known properties of photon transmission
through polarization analyzers.

The ensemble necessarily arises from a photon propagat-
ing within the analyzer. We designate this photon as a gen-
erator photon 7y, . For a trial solution we then consider an
analyzer emission ensemble derived from projections in the
transverse plane specifically originating at the polarization
axis as 7y, reaches the analyzer’s exit face. This solution
implies that the y, wave structure is narrowly confined to the
plane of the analyzer’s polarization axis within some angular
arc & as it propagates within the analyzer. Because of this
physical confinement, v, is characterized as being in J-form.
We proceed with this physical representation of y, as we
construct the analyzer emission ensemble and subsequently
reexamine this representation for self-consistency.

The analyzer emission ensemble that we construct consti-
tutes the objective specifications of a representative set of
photons potentially emitted by an analyzer. We assign a set
of |u;) orthonormal basis vectors in Hilbert space in one to
one correspondence with the angular coordinate 8=k for
integer values of k where |k 3|< 7r/2. We ultimately obtain an
infinite dimensional Hilbert space as §—0. The analyzer’s
polarization axis is chosen to coincide with the x axis where
6=0 in real space.

When an internally propagating §-form generator photon
Yg . associated with the basis vector |ug), reaches the exit
face of the analyzer, a set of projected packet state vectors

| 1) =cos(kS)|uy) (1)

is generated. This set is used to construct the analyzer emis-
sion ensemble.
The ensemble’s analyzer emission superposition state
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|¢e>=]§l "”f>=,§,, cos(j 8)|u;) )

is constructed from the Eq. (1) state vectors where n
= /(2 §)=—m. Analyzer emission superposition states as-
sociated with arbitrary polarization analyzers are all identical
to Eq. (2) after translating to a frame in which |u,) is asso-
ciated with the vy, propagating in the plane of the emitting
analyzer’s polarization axis. The generator photon y, orien-
tation and the ensemble’s “‘centroid” orientation are then
both given by |u,) in Hilbert space.

For analyzer emission ensembles, each constituent |¢;)
Eq. (1) packet state vector is a single state formed with the
corresponding |u;) basis vector because the projections
originate from a single basis vector. As a consequence, each
| ¢) packet state vector is identified as the projection of the
ensemble’s analyzer emission superposition state |¢,) into
the |u;) Hilbert subspace. In the present context, this prop-
erty is of a trivial nature. However, it will be instructive to
examine the analogous projections when we consider corre-
lated photons.

The norm of | §,) is

el =( bl b1) 2= cos(k 5), 3)

which is equivalent to the amplitude of a particular projected
state vector | @),

(url pi) =cos(k ), 4

as well as the amplitude of the analyzer emission superposi-
tion state at some |uy),

(up| pe)=cos(k4). ®)

Physically, each of these quantities may be viewed as a
cos(kd) projection from the k 5-distant generator photon.

Squaring either amplitude gives the probability of an en-
semble planar packet at a particular |u,):

(gl )2 = (] o) = cos2(k 3). ©

The functional cosine squared probability of ensemble planar
packets specified in Eq. (6) is depicted in Fig. 2. From this
probability we now seek the compilation of these planar
packets into an ensemble set of emission photons.

In the interests of determining this compilation, we con-
sider the requisite criteria for transmission of a photon
through an analyzer. The photon we select is a particular
ensemble member of an emission analyzer A. That photon,
when incident on some distant analyzer A’, must first propa-
gate within that analyzer as a J-form generator photon y;
before being transmitted as an emission ensemble member of
A’. The accompaniment of the excitation in this process is an
implicit requirement if the resultant emitted A’ ensemble
member is to be defined as a (potentially detectable) trans-
mitted photon.

We postulate that an excitation migrating on the photon’s
wave structure has physical accessibility to any particular
wave packet on some collective arc A, because of the con-
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FIG. 2. The cos® ¢ function gives the angular probability of
planar wave packets emitted from a polarization analyzer and asso-
ciated with an internally transmitted photon 7y, with packets con-
densed along the analyzer’s polarization axis at §=0. The angular
probability is unaltered by inversion of the cos? @ contour for 8
<0. A photon 7y, emitted by the analyzer is a random member
(row) of the ensemble {7y,} defined by the modified (bold) contour.
Alternatively, for particles, substituting the quantities in parentheses
gives a cos’(6/2) contour representing the angular probability of
spin wave packets emitted from a Stern-Gerlach analyzer and asso-
ciated with an internally transmitted particle p, with packets con-
densed along the analyzer’s magnetic axis at §=0. Similarly, a ¢
<0 inversion gives a modified contour defining the ensemble {p,}.
A particle p, emitted by the analyzer is a random member (row) of

{p.}-

tiguity of those packets. Consistent with this property, the
excitation also has physical accessibility to the é-form wave
structure arising within the analyzer only when the A, of an
incident photon intersects the analyzer’s polarization axis.
Since photons emitted from an analyzer are known to have a
0.5 probability of transmission through a subsequent, ran-
domly oriented, analyzer, we anticipate that emission en-
semble members are characterized by a contiguous A,
=q/2 arc of packets which yields that 0.5 probability. We
define A»vy= 7/2 photons as having a full complement of
packets.

The compilation of the emission packets into an ensemble
of photon members is then particularly straightforward given
the above considerations. An inspection of the Fig. 2 cos” 6
wave packet probability yields the requisite solution by not-
ing that the probability as a function of ¢ is invariant under
an inversion of the #<<0 packet contour to 1 — cos? 6. In the
modified form of the contour we identify the set of photons
defined by the rows of wave packets. This set of full comple-
ment photons uniquely constitutes the requisite ensemble
{¥.}. Any single v, emitted as a stochastic process from an
analyzer A is a random member (row) of the associated en-
semble. Each member has a contiguous arc of packets A,
= 7r/2. Summed over multiple emitted photons, the ensemble
and the cos® # wave packet probability are trivially recov-
ered.

An ensemble’s wave packet probability specified by Eq.
(6) and depicted in the modified Fig. 2 contour may also be
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regarded as the ensemble’s wave packet distribution. There is
an effective equivalence of these two terms in the treatment
of photon ensembles since both quantities are represented in
their entirety in the plane orthogonal to the propagation axis.
(However, in our treatment of particles we will encounter an
exception to this equivalence arising from the three-
dimensionality of relevant distributions.)

We can now consider the ensemble members emitted
from an analyzer A interacting with a second polarization
analyzer A’ rotated by =k & with respect to A. We see that
a cos? @ fraction of the ensemble members have a A, that
intersects 6, resulting in transmission, which gives us agree-
ment with Malus’s law for the representation. Note that the
representation is explicitly locally real. The state of a photon
incident on analyzer A’ is in no way altered by the physical
orientation of that analyzer. Photons are not regarded as bi-
nary quantum objects with a horizontal or vertical polariza-
tion. From the ensemble construction, the members of {v,}
have a continuum of orientations given by the bisector angles
6, of the rows in the modified contour of Fig. 2. Further-
more, the transmission outcome for a random member inci-
dent on A’ is fully deterministic the instant that particular
member leaves analyzer A with an objectively defined packet
arc A, with orientation @, . For that photon to be transmitted
by A’, its packet arc A, must intersect the A’ polarization
axis. The photon’s emergence from A’ is then as a member
of a new ensemble generated from |u;) associated with the
A' polarization axis at 8’ =0. Consequently, we have trans-
mission consistent with Malus’s law for any number of arbi-
trarily rotated sequential analyzers.

It is instructive at this point to examine the underlying
differences between the locally real representation and quan-
tum mechanics. For this examination, we again consider
photons transmitted through an analyzer A with its polariza-
tion axis oriented at =0 along the x axis and a subsequent
analyzer A’ rotated at some 6.

The strict probabilistic interpretation of quantum mechan-
ics requires that the photon transmitted through analyzer A
be in a definite state [d:,l,,,) |x) where |x) and |y) are or-
thonormal basis vectors in a two-dimensional Hilbert space.
In this interpretation, the role of the measurement process is
central to the assignment of states. That photon, when mea-
sured by a subsequent analyzer A’ rotated by 6, must now be
in a binary superposition state

| @gm)=(cos O)|x")+(sin O)|y") ™)

by a projective transformation to the new basis pair |x') and
|y} of A’. The respective amplitudes of the photon being in
the states |x'),|y’) are

(x| pgmy=cos 0, (y'|dym)=sin (8)
with corresponding probabilities
(x| pgm)?=cos? 8, (y'|¢ym)>=sin’ @ ©)

for the inherently binary measurement outcomes.
Quantum mechanics requires that the assignable states be
a binary superposition prior to measurement, and, after mea-

PHYSICAL REVIEW A 65 032102

surement, the collapse of one of the states places the photon
in a single definite state of the other. The requisite Hilbert
space is two dimensional. Because of the role of the mea-
surement process in assigning photon states, the photon itself
is necessarily treated as a probabilistic entity. Moreover, all
photons emitted from an analyzer are identical probabilistic
entities. They are distinguishable only upon measurement as
a purely probabilistic consequence of assuming one of the
two possible states of the superposition. Quantum mechanics
regards these probabilistic entities as nonreal.

In the locally real representation, the transverse state of a
particular photon y emitted by an analyzer can be objectively
specified by the superposition state

|<I>,>=j§m |uj) (10)

defined on a Hilbert space (which becomes infinite as &
—0) with orthonormal Iu) basis vectors. Here A= /2
=(n—m+1)éand 0,=3 3 (n+m)é. Equation (10) exphcu:ly
requires that the photon be “in” all of the |u ;) states associ-
ated with the packet arc A, at 6, . This property is demon-
strated by the probability (u k|<I> )2= 1 for all |u,) associated
with A . Each of these occupied states represents an objec-
tively rea] planar wave packet.

In the locally real representation, any analyzer A’, posi-
tioned subsequent to an emission analyzer A, has no role in
the Eq. (10) specification of an emitted photon’s superposi-
tion of states. Objectively, the infinite |u;) states associated
with A, exist independently of any measurement device.

If the subsequent analyzer A’ has its polarization axis at
some 6 associated with a particular |u;) in the Hilbert space
of the emission analyzer, a transmission outcome experimen-
tally establishes only that |u;) was one of the constituent
states of the incident photon |<I>y) and an absorption outcome
establishes the converse. Objectively, the outcome is deter-
ministically fixed the instant the photon is emitted from A
and the constituent states of |®,) are specified.

Experimentally, however, we have knowledge only that
any photon emitted by A is a member of an ensemble con-
structed’ from the Eq. (2) analyzer emission superposition
state | ,). We can then examine this ensemble using a sub-
sequent analyzer A’ rotated by #=4k& which associates A’
with some basis vector |u;). The probability of a random
ensemble member emitted by A having a constituent state
|uy), i.e., a planar wave packet associated with that state, was
shown in Eq. (6) to be cos*(kd). Since those members having
a state at |u;) are transmitted, we showed that cos*(kd) is
equivalently also the probability of transmitting a random
ensemble member and, consequently, gives us Malus’s law.

This result can be made even more explicit by noting that
an ensemble member is successfully transmitted through a
subsequent analyzer A’ only when it transitionally assumes
the form of a generator photon as it enters that analyzer. In
the Hilbert space of A’, the state of this generator photon
|®;)=|ug) since the generator photon is, by construction, in

‘the single state associated with the A’ polarization axis. A

rotational translation between the Hilbert spaces of the re-
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spective analyzers implies that in the frame of A there is a
|t =|ug), resulting in a modified form of Eq. (6):

(] pe)*=cos*(k8). (1)

The particular expression of Malus’s law given by Eq.
(11) is suggestive of a quantum mechanical transition prob-
ability |¢,)—|®,) at A’. However, from the objective per-
spective of local reality, this interpretation is misleading be-
cause | ¢,) is not a single definite state at |ug) as in quantum
mechanics, but represents an ensemble of packet states with
centroid at the basis vector |uy) and a distribution defined
over the infinite set of |u;) basis vectors. In the infinite di-
mensional Hilbert space of the locally real representation, the
ensemble is effectively a superposition of wave packet states
that, as a stochastic process, emits a random member at A
that is itself a superposition of wave packet states. Most im-
portantly, we must be clear that |¢,) is not present at A’
since it ceased to exist the instant the ensemble member left
A.

The physical significance of a particular photon’s super-
position state Eq. (10) can further be understood by the
evaluation of

(®,|®,y=N=m/(29). (12)

Equation (12) gives the sum of the Eq. (10) particle’s packet
probabilities over a full 7 angular span of the 2N Hilbert
space basis vectors |uj). The N individual unit probability
terms associated with a particular objectively specified pho-
ton confirm that N packets are present on that angular span.
Equation (12) simply reminds us once again that in the lo-
cally real representation a photon with N packets is “in” all
of the states occupied by these objectively real packets. Ac-
cordingly, our sum over probabilities is appropriately N and
not unity. Objectively, the inherent multiplicity of packet
states in the locally real representation explicitly necessitates
the use of a corresponding multidimensional Hilbert space,
which goes to infinity as 6—0, in contrast to measurement-
based quantum mechanics which requires a two-dimensional
Hilbert space as a consequence of the binary observable out-
comes. Of course, when we reach the limit §— 0, the state of
the photon is objectively described by A, and 6,. The for-
malism of a multidimensional Hilbert space is seen as a
mathematical intermediary.

After a photon is emitted, we can examine additional
properties by representing that objectively realized photon in
Euclidean space. This representation, while not applicable to
the construction of the emission ensemble, provides a pow-
erful tool for gaining physical insight into the structure of
such realized photons. In particular, the representation in Eu-
clidean space allows us to understand the role of the ampli-
tude coefficient b.,. For these purposes, we select a reference
frame with the z axis oriented along photon trajectories and
the x axis aligned with the polarization axis of an analyzer A.

We first consider a particular incident photon such as the
example in Fig. 1(b) with an arc A ;= 7r/2, an orientation 6.,
from the analyzer’s polarization axis, and a uniform packet
amplitude coefficient b,;,. We can make these specifications
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for an objectively real photon and examine the measurement
consequences even though we have no experimental means
of selectively generating any particular photon at will. The
set of packets of this physically realized photon can be rep-
resented in the two-dimensional Euclidean space orthogonal
to the propagation axis by an equivalence set of b ,; magni-
tude radial vectors each oriented at the respective angle of its
packet, giving

where (n—m+1)8=A,=u/2, (n+m)5/2=6,;, and the
f']- are unit radial vectors oriented at the 8= j § of the respec-
tive packets. Equation (13) should be compared to the corre-
sponding Eq. (10) representation of a photon in Hilbert
space. Both equations relate only to the transverse aspect of
a photon’s wave structure.

In Euclidean space we begin with the Eq. (13) represen-
tation of an objectively real set of packets and examine the
role of the amplitude coefficient as a photon enters and exits
an analyzer.

With respect to the example in Fig. 1(b), the present
analysis of a particular photon is applied to the w/2 arc of
packets on the right. The left arc, which merely provides
mirror redundancy, represents the same packets phase shifted
along the propagation axis by 7.

When the photon begins to enter analyzer A, the vector
amplitude b, of each individual packet rapidly reduces to
zero and, simultaneously, projects its component along the
polarization axis onto that axis (chosen here as the x axis).
Collectively, the vector sum of these projected packet vector
components results in a “superpacket” of amplitude coeffi-
cient b5 (>b,;) “condensed” along the polarization axis of
the analyzer in 5-form.

Alternatively, this superpacket amplitude b5 can readily
be computed by first forming the vector sum of the incident
photon packet vectors, which yields a resultant vector ori-
ented at 6.,; [= 6, in Fig. 1(b)]. The magnitude M ,; of this
resultant vector can be determined by integrating the projec-
tive components with respect to the bisector of an arbitrary
A,=m/2 arc. Integration of the discrete packet contributions
is valid as 6—0. The magnitude of the resultant vector is

w4,
b.ﬂ-f (cos 9)d 8
—n/4
M..=

_\/Ebyi
vi K N

(14)

Then the resultant vector’s component projected onto the po-
larization axis has an amplitude coefficient

\/Eb ;COS 6.;
bs=—T—L. (15)
é
The “single” superpacket photon
®;5=bsx (16)
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propagates through the analyzer, condensed along the ana-
lyzer’s polarization axis defined here as the x axis. ®; is
clearly a Euclidean space representation of a generator pho-
ton y,. As we impose the mathematical limit 6—0, the
number N of planar wave packets that are associated with an
incident photon’s finite A, goes to infinity. Consequently,
with N individual b,; amplitades contributing their respec-
tive components along the analyzer’s polarization axis, the
vector sum of the resultant superpacket has an amplitude
coefficient b s— as demonstrated by Eq. (15). However,
the integral of ®; over the angular 6 of the superpacket at
the polarization axis,

J’5¢5d0=b5f6d0x= \/Eby,-(cos 6,:)x, a7

remains finite giving the S-form superpacket photon ®; a
formal equivalence to a Dirac & function.

Classical electromagnetics provides a compelling physical
rationale for this condensation process along the polarization
axis. This rationale is appropriately considered in the context
of a multiplicity of photons on a plane polarized beam. The
multiplicity of realized photons can be represented by the
members of an emission ensemble. The critical property of
the ensemble in this regard is the symmetrical distribution of
its member’s (arc bisector) orientations 6., about the centroid
orientation that coincides with the polarization axis of an
emitting analyzer. We can then identify the orientation of a
plane polarized beam with that of the ensemble’s centroid. It
is therefore meaningful to specify the “polarization” of an
ensemble. Subjectively, it is also appropriate to attribute this
“polarization” to all individual photons associated with a
particular ensemble. Consequently, an individual photon,
which subjectively has the property of “polarization,” objec-
tively may be further specified as having a definite orienta-
tion at some particular 6.,.

The familiar type of polarization analyzer we consider
here consists of a transmissive dielectric plate with an atomic
structure exhibiting parallel linear conduction paths. The po-
larization axis lies orthogonal to these conduction paths in
the plane of the analyzer.

At the level of classical electromagnetics, we examine a
plane polarized beam of photons, characterized by some
electric vector E, incident on an analyzer with its polariza-

tion axis along some unit vector f'g rotated by 0 from E. We
know that the component of E along the conductive paths is
strongly absorbed as the beam enters the analyzer. Conse-
quently, the remaining beam propagating within the analyzer
is characterized by the component of E projected identically
along the polarization axis, E-ryr,.

We hypothesize that there is a direct physical correspon-
dence between the electromagnetic wave and the wave struc-
ture in the locally real representation. The electric field of a
single photon is most logically associated with a radial vec-
tor at the instantaneous packet locus of the excitation. For a
suitably large number of photons on a plane polarized beam,
the angular distribution of these vectors may be associated
with a radial vector at each of the packets on each of an
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ensemble’s members (see Fig. 2). Symmetry ensures that the
vector sum in Euclidean space is a resuitant that lies along
the centroid of the ensemble. We identify that resultant vec-
tor with E.

Consequently, in free space, even though the locally real
representation objectively implies an angular distribution of
radial electric field vectors about an incident beam’s polar-
ization orientation, the experimentally observable resultant
electric field is not distinguishable from the single vector
quantity E of classical electromagnetics.

Conversely, the analyzer’s structure explicitly applies a
physical constraint that necessarily confines the electric field
of the internally propagating wave to the plane of the ana-
lyzer’s polarization axis. Consistent with that constraint, we
postulate that the locally real wave structure is, likewise,
confined to that plane as a superposition of projections of the
incident packets in the form of a single superpacket photon
L P

Representation in Euclidean space also provides us with
additional insights specifically relating to the formation of
the superpacket. We have seen that the transition of an inci-
dent photon, with packets arrayed over an angular arc A,
=7/2, to a condensed S-form superpacket within an ana-
lyzer is critical to the transmission outcome. From the per-
spective of the photon’s wave structure, the interception or
noninterception of the polarization axis by the A, is of minor
consequence. In the example depicted in Fig. 1(b), if we
orient the analyzer’s polarization axis along the x axis, A,
happens to be intercepted and a large amplitude S-form su-
perpacket is formed along that axis from the projected com-
ponents of the incident packets. Although a very slight coun-
terclockwise rotation of that particular A, arc would result in
its noninterception by the polarization axis, the amplitude
coefficient b5 of the superpacket would be only marginally
reduced in magnitude. However, from the perspective of the
excitation migrating on the photon wave structure entering
analyzer A, the difference between interception and noninter-
ception is of paramount significance.

As the incident wave structure begins to penetrate the
analyzer, the amplitude of packets on the A, arc rapidly
diminishes toward zero and, simultaneously, the S-form su-
perpacket amplitude sharply rises along the polarization axis.
When the A, arc of a particular incident @, intercepts the
polarization axis, the excitation migrating on the diminishing
packets of the arc entering the analyzer promptly locks into
the rising &-form superpacket located on A, and is transmit-
ted through the analyzer as a superpacket photon ®;.

Conversely, when the A, arc of a particular ®.; does not
intersect the analyzer’s polarization axis, the excitation mi-
grating on the diminishing packets of A, does not encounter
the -form superpacket since it is not contiguous with A,,.
As a result, the excitation is absorbed in the analyzer and the
superpacket on the polarization axis is transmitted as an
“empty wave’ through the analyzer. The “empty wave” is
equivalent to an excitationless superpacket wave structure
d)% propagating within the analyzer. We will reserve the term
“photon” for wave structures that are excitation bearing. At
the exit face a full complement excitationless empty wave
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ensemble member fb‘,’/ is emitted. When considering discrete
photon phenomena involving two-channel devices such as
calcite polarization analyzers and beam splitters, quantities
of the form <I>(,)/ and (a “photon”) ®, are emitted, respec-
tively, from the two channels and may subsequently intersect
to produce an interference. These quantities immediately
provide the means for self-consistently constructing a locally
real representation fully inclusive of such two-channel phe-
nomena. Quantum mechanically, such phenomena invoke
spatially separated superposition states with nonlocal conse-
quences.

The representation in Euclidean space also allows us to
compute changes in the amplitude coefficient as a photon
enters and exits an analyzer. When a J-form superpacket
photon reaches the analyzer’s exit face, a stochastic analyzer
emission process occurs. As a transition from the emergent
®;, a photon ®, is emitted with a A, ==/2 packet arc, an
orientation of some @,, and a b, amplitude coefficient.
Aside from the specification of b, that emitted photon is
equivalent to one of the members of an ensemble centered
about the analyzer’s polarization axis selected here as the x
axis. We want to understand the role of the packet amplitude
coefficient in the context of analyzer transmission processes.

It is easily demonstrated that the amplitude coefficient b,
of the emitted photon @, is a function of that photon’s ori-
entation 6., and the amplitude coefficient of the superpacket
b 5 from which it was generated. Consistent with the analysis
applied to Egs. (14) and (15), the projection of the super-
packet amplitude vector along 6., has a magnitude b scos 6,.
The vector sum of the emiited photon’s packet amplitudes
produces a resultant vector oriented at this #, with magni-
tude M = \/Eb.// 8. Equating these magnitudes uniquely de-
termines the relationship between the objective orientations
and amplitudes of the incident and the emitted photons,

b= 6b scos 6,)/ \/5=byi cos 6., cos . (18)

Projectively, the analyzer emission process is recognized as a
reversal of the condensation process with the explicit re-
minder in Eq. (18) that the orientations of the incident pho-
ton and the emitted photon are not generally equal.

Despite the Eq. (18) dependence of the wave packet am-
plitude coefficient on the photon orientation values, the
physical role of the amplitude coefficient is not pertinent to
photon transmission probability through an analyzer where
only A, interception by the polarization axis is relevant.

We see from Eq. (18) that, in general, the amplitude co-
efficient b, is diminished each time a photon enters and exits
an analyzer, thereby rescaling the complete wave function
®(z,1;A,,8,,,b,). Similarly, b’ is also diminished and pro-
portionately rescales the “wave intensity” ®*®. Since the
probabilities of photon analyzer transmission and excitation
locus on that photon’s wave structure are independent of any
rescaling, we are free to suppress b,,. This suppression ef-
fectively renormalizes the intensity each time the photon
passes through an analyzer and confers upon ®*® an
equivalency to a true mathematical probability. This is cer-
tainly a calculational convenience, but we must not lose sight
of the wave as a physically real entity.
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Before concluding our treatment of analyzer emission
processes, we want to note that the polar coordinate ¢ used
above in the construction of ensemble states from a generator
photon vy, at §=0 also represented angular positions with
respect to the analyzer’s polarization axis. We now introduce
the angular coordinate ® to define the physical orientation of
an analyzer in the laboratory frame. Choosing © as the angle
with respect to the polarization axis gives the equivalence
® = 4. To that extent, the introduction of ® may be regarded
as superfluous in the treatment of analyzer emission; how-
ever, in the context of correlated photons (and correlated
particles), we shall need to distinguish the two quantities.

Finally, before leaving the topic of photon analyzer emis-
sion, we may reasonably ask why the locally real represen-
tation is of utility if we get Malus’s law from quantum me-
chanics as well. The response to this point is that quantum
mechanics, aside from Bohm’s particular interpretation [26],
has already required that we abandon the notion of physical
reality for the photon. An even more compelling differentia-
tion between the two representations will occur when we
consider correlated states. Quantum mechanics, including the
Bohm interpretation, will impose nonlocality.

C. Correlated photons

We consider here atomic transitions emitting two corre-
lated photons that together carry a net angular momentum of
zero. The polarization states of the two photons are then 7
out of phase, but this phase differential is not evidenced by
the analyzers and quantum mechanically we expect that both
photons are either vertically polarized or horizontally polar-
ized.

In analogy to analyzer emission, a correlated photon pair
is treated as an “independent” vy generator photon and a
“dependent” yz emission photon. The emission photon y is
a member of an ensemble {yz}, and we require zero angular
momentum within the closed system of any yg,yg corre-
lated pair. To the extent that y, and ys both generate an
ensemble member, the analyzer emission process for {7y}
and the correlated photon emission process for {vyg} are
similar. However, the physical constraints associated with the
two processes are different.

A significant difference relates to the photon arc span A .
In analyzer emission, projections from the 7y, angularly con-
fined &-form “source” yield a cos® @ distribution of {¥,}
packets. In contrast, the “independent” 7y of a correlated
pair is unrestricted by confinement to an analyzer. Accord-
ingly, yg is a full complement photon with A ,=m/2 and
presents a generator source that is extended over its entire
7/2 arc of packets.

An additional difference between the analyzer emission
process and the correlated photon process is associated with
the relevant reference frames. Analyzer emission is most ap-
propriately represented in the laboratory reference frame
since the state vector of v, is aligned with the polarization
axis of the analyzer. Conversely, the orientation of the inde-
pendent correlated photon yg can assume any value at ran-
dom in the laboratory frame for a particular event in free
space. Consequently, it is convenient to translate to the pho-
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FIG. 3. Correlated photon pair planar wave packets for y; and
for ensemble members (rows) of {7yz}. Alternatively, substituting
quantities in parentheses gives correlated particle pair spin wave
packets for p; and ensemble members (rows) of {pz}.

ton reference frame K( ) in which the planar packets of all
v photons are always in some fixed orientation relative to
6. Initially, we shall find it convenient to align the exterior
wave packets of yg with =0 and 7/2 as shown in Fig. 3.
Subsequently, we will rotationally translate §=0 to the yg4
bisector (yg's orientation) defined as +x in K. In either
case, with the correlated photon source interposed between a
pair of opposed polarization analyzers, the orientations -of
those analyzers must be treated as completely random in K,
constrained only by their fixed relative rotation designated
by the angular variable © in the laboratory frame.

We shall see that the analyzer transmission results for our
present consideration of correlated photons are independent
of the amplitude coefficient b,. A corresponding indepen-
dence was observed earlier with respect to transmission of
the full complement analyzer emission photons. As a result,
we will reexamine the role of b, in the context of correlated
photons only very briefly in the interests of verifying this
independence.

Our principal objective here is to generalize the basic pro-
jective formalism of Egs. (1)—(6) in a consistent manner over
the extended 7y generator source. For every packet location
along the angularly extended 7y, source packets, we must
project a contribution to the distribution of emission packets
in {yz} through all possible angles 6=k&. The operation is
conducted in K(8) as shown in Fig. 3. The projection angle
0=0 (k=0) imposes the boundary condition that {yz} be
identically zero outside the arc of y; packets where 8
>/2 since vyg is itself zero in this range. Zero angular
momentum for all correlated pairs could not be satisfied if
{v£} were to exceed this boundary condition. (This condition
results in transmission of any {y;} member always being
accompanied by transmission of y; when the respective ana-
lyzers have identical orientations, i.e., ®=0.)

In the interests of presenting a lucid and explicit deriva-
tion of local reality, we shall first consider an approximation
of correlated photon structure in a suitably finite dimensional
Hilbert space before proceeding to the exact solutions in an
infinite dimensional Hilbert space. This approximation al-
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lows us to individually enumerate all of the relevant prob-
ability outcomes. In this regard, we diverge from the con-
tinuum limit of 6—0 and initially examine a coarse &
=30° example.

The choice of §=30° temporarily places us in a six-
dimensional Hilbert space since the basis vectors must span
an arc of 7. As 6—0, the dimensionality of the requisite
Hilbert space remains finite at some 2N= #/ 6. Ultimately,
when we impose the limit 6— 0 on the locally real represen-
tation, the dimensionality of the Hilbert space becomes infi-
nite in contrast to the corresponding two-dimensionality of
polarization representation in quantum mechanics.

To remind us that we are initially considering the coarsely
finite 6=30° example, angular values are expressed in de-
grees instead of radians. With 6= 30°, three basis vectors in
Hilbert space, |u,), |u,), and |u3), span a full complement
arc as depicted in Fig. 4. We have the three projections

|1} =cilus), (19)
|#2) =cilur})+clus), (20)

and
|p3)=cylus)+crluz)+cslus). @1

The quantity |¢;) is the projection of some correlated pho-
ton superposition state |¢g) in the Hilbert subspace |u,).
Similarly, |¢,) and |¢;) are the projections of |$g) in the
Hilbert subspaces |u,),|u,) and |u;),|u,),|us), respectively.
Note that, because of the multiple generator packets contrib-
uting to |¢,) and |¢é3), these vectors are expected to be
rotated in Hilbert space away from the |u;).

For the present set of projections, only in the case of |$;)
is there a one to one correspondence between a state vector
and the basis vector from which it is constructed. This rela-
tionship exists because |¢;) arises from a projection of a
single generator packet as shown in Fig. 4. Recall that this
was the case for every one of the Iq&,-) constituent state vec-
tors of the |¢,) analyzer emission superposition state since
all projections arose from the single generator photon 7,.

However, the remaining Eqs. (20) and (21) state vectors
are each composed of a mixture of projections from multiple
generator packets, two for |@,) and three for | ;). Because
of this mixing and because,_the final state vector |¢s) is con-
structed over a set of basis vectors |u,), |u,), and |u3) that
constitute a full complement of packets, we identify the cor-
related photon superposition state

3
|¢E>=|¢3>=j§=:l cjluj). (22)

As a consequence of the mixing, the c¢; coefficients must
be extracted from the simultaneous set of Egs. (19)—(21). We
can solve for these values by observing that, as in Eq. (3) for
analyzer emission, packet projection from a single generator
site through k& in Hilbert space yields a projected state vec-
tor with norm | ¢;||=cos(k8). From Fig. 4, |¢;) is con-
structed from the 60° projection of the generator packet at
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FIG. 4. Correlated photon example for §=30° of ensemble pla-
nar wave packet projection computation. Joint transmission is 4/4,
3/4, 1/4, and 0/4 when analyzers are relatively rotated by
0°, 30°, 60°, and 90°, respectively.
|us). Similar constructions apply to |¢,) and to | ¢3) except
that these states are formed from multiple projection contri-
butions. The state vector |@,) is constructed from the 30°
projections of generator packets at |u,) and |u3), and |#3) is

constructed from the 0° projections of generator packets at
|u1>9 |u2>, and |u3). Then

. 1
Igall=(rld1)?=(c])?=cos60°=5,  (23)

3
lall=(al $2)"?=(c+c3) P=cos30°=—, (24)

and
sl = (&3l B3y 2=(ci+c3+c3) P=cos0°=1. (25)
We have from Egs. (23)—(25)

1 1
C1=C3=‘i‘, C2=$. (26)

The resultant correlated photon superposition state is

1 1 1
|¢E>=|¢3>='2‘|“1)+ Ehiz)"‘ilus)- (27)

The coefficients are the amplitudes of |¢j) (or equivalently
of | ¢£)) along the |u;). That is,

(uy|1)=(u1| b} =cos 60°, (28)

(uz| ) =(ur| pg)=cos 45°, (29)
and

(u3|¢3)=(us| dg)=cos 60°. (30)
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We see that |¢z) in Hilbert space is rotated 60° from
lu1), 45° from |u,), and 60° from |us), which is why |¢g)
has nonzero amplitudes along each of the |u;).

In order to determine the relative proportion of ensemble
packets at the |u j), we need to calculate the squared ampli-
tudes (u;| p)>. We have

1 1
<ull¢E>2=<u3l¢E>2=Z’ ('42|¢E>2=5- (31

For the particular example of 6=30°, the Eq. (31) values
express the relative probabilities of correlated photon en-
semble packets at each |u;) as depicted in Fig. 4. As previ-
ously observed, the ensemble packet probability is immedi-
ately equivalent to the ensemble packet distribution for
photons. We can then readily determine the requisite packet
configurations of ensemble members from the Fig. 4 packet
distribution. The lower packet row of {yg} is identified as a
full complement ensemble member yg;. Symmetry about the
bisector axis of that member and the y; provides the requi-
site zero net angular momentum for the ygz;,ys pair. The
remaining single packet in the upper row of {yg} is neces-
sarily identified as the other ensemble member yg,. Symme-
try still preserves the requisite zero net angular momentum
for the yg,, Y pair. We see that the single packet yg,, with
a total arc span A,=30° instead of the full complement
A,=90°, is a natural and necessary outcome of the ensemble
construction in Hilbert space.

Despite the coarseness of §=30°, this example proves to
be nontrivially informative, and it is instructive to examine
the predicted measurement outcomes before proceeding to
the limit of §~~0. We can readily enumerate all of the joint

‘transmission probabilities P.(k8) by inspection of the

packet ensemble distribution in Fig. 4 when the opposed ana-
lyzers have the relative angular separations of ©
=0°, 30°, 60°, and 90°. We begin with P (0°) which is a
summation of the 0° samplings in Fig. 4, i.e., both analyzers
intersect y¢ and {yg} at the same |u;). We have

1
P7(0°)=T§(1+2+1+3><0). (32)

The 1/12 factor is the requisite normalization for the total
number of samplings. These include the three samplings as-
sociated with |u;), |u,), and-|u3) which intersect v and
{y&}. Additionally, we must include the three additional sam-
plings at |us), |us), and |ug) for which neither yg or {yg}
are intersected. These six samplings must be doubled to 12
because there are two ensemble members. The first three
terms in the factor in parentheses give the summation of the
ensemble packets at |u,), |u,), and |us) for which a yg
packet is correspondingly always intersected. The 3 X0 term
reflects the noninterception of both y; and {yg} for
|lug), lus), and |ue)-

Similarly, P,(30°) is computed from the 30° offset of
analyzer orientations as shown in Fig. 4 and we have

P,,(30°)=11—2(1+2+4><0). (33)

032102-10



LOCALLY REAL STATES OF PHOTONS AND PARTICLES

Since we are computing joint transmission, the zeros in pa-
rentheses include sampling nonintersection with both y; and
{7ye} as well as nonintersection with either ¥ or {yg}. By
the same process we have

1 1
Py(60°)= 75 (1+5X0), P,(90°)=1>(6X0).
(34)

All of these joint transmission probabilities can be compactly
expressed in terms of the squared Eq. (31) amplitudes, giving

4 3k 1/2\32% 142
Py(kd)= 15 Z:l (ui|¢5>2=§(§)§1 C?=§(‘3‘)0052(k5)-

(35)

We recognize that the extracted  factor in Eq. (35) arises
from the y; occupying half of the complete set of Hilbert
space unit vectors |u;), ... ,|ug). The extracted 3 factor is
defined as the fractional occupancy F., of packets in the
|ue1),|uz),|u3) subspace of the ensemble distribution, Fig. 4.
This fractional occupancy arises naturally from the construc-
tion of the correlated photon superposition state | ¢z) and has
profound implications with regard to the applicability of
Bell’s theorem [4,25]. Because of this fractional packet oc-
cupancy, a yg transmission is accompanied by a yy trans-
mission only two-thirds of the time when the analyzers are
aligned (k=0). Equivalently, the average arc span of an en-
semble member is

1(90°+30°)

(B,)=F,90°=——55——90°= 60", (36)

which is two-thirds of a full complement A ,=90°. However,
because of the coarseness of the §=30° example, the two-
thirds fractional occupancy of the ensemble packet distribu-
tion converges to a modified value as §—0. We shall reex-
amine the significance of the fractional packet occupancy
factor F,, after taking this limit.

Finally, before leaving the §=30° example, we observe
that the normalized ensemble packet distribution can be fit-
ted to a sin(26) function at the five indicated points shown in
Fig. 4.

As 6—0, the number of Hilbert space orthonormal basis
vectors spanning a A, =/2 full complement arc increases
from the present three (for 6=30°) to some N=7/(25).
The Hilbert space increases from six dimensional to 2N di-
mensional. The construction of |¢;) through |¢y) proceeds
as before, yielding a set of N readily solvable simultaneous
equations in diagonal form analogous to Egs. (23)—(25).
Equation (35) becomes

1 N—k 1
Py(k&)=3F, 2 (uldg)*=5Fyco’(kd),  (37)

giving the joint transmission probabilities for any integer
value of k=©/3. The exact value of F., can be determined
from Eq. (37) for sufficiently large N. However, we shall
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obtain F, below after converting the summation to an inte-
gral equation as we reach the limit §—0.
The integral form of Eq. (37) is

1 w2—-0 1 »
P7(®)=—2—F7f0 E (0)do= EF,cos 0, @33

for which the ensemble packet distribution is given by the
function E,(6). The solution of this integral equation is
E (#)=sin26, and we can now identify this solution with
the packet ensemble envelope of {7y} depicted in Fig. 3. The
packet occupancy fraction is

/2
f sin(26)d 8
0

YT 2
f de
0

and demonstrates that the packet occupation fraction F 5 di-
minishes from 2/3 for §=30° to 2/ for §—0.
Then the joint transmission probability in the limit 6—0

(39)

31w

is
1
P(0)= ;cosz('). (40)

At this point, we apply a /4 rotational translation of 8
=0 in K(0) thereby aligning the bisector (orientation) of yg
with the defined axis x noted in Fig. 3. Under this translation,
the envelope of ensemble packets E (#) =cos 26 and the y;
packets are symmetrized about x without altering P (©).

We can now proceed with the construction of the emission
ensemble members {yz} from the Fig. 3 distribution of en-
semble packets. This process is a trivial extension of the &
=30° example. Zero net angular momentum for all yg, vg
correlated pairs and packet contiguity require identification
of the Fig. 3 packet rows as the constituent {yz} members.
These {yg} members have a continuous spectrum of arc

" spans ranging from zero to /2. The packet occupation frac-

tion gives an average ensemble member arc span of
t.
T

(8,)=F,5=1. (41)

For any particular correi@ted photon pair, the y is a ran-
dom member (row) of the emission ensemble {yz}. The yg
and its associated y share an orientation 6, that is random
in the laboratory frame and is identically zero in K.

In order to calculate the predicted “joint probability™
# (0) for detectors placed beyond each of the analyzers we
need to derive expressions for the coincidence rates R(©)
with analyzers (relatively rotated by @) and R, without ana-
lyzers. We have

R(®)=R;fP (®)7 (42)

where Ry is the true production rate of correlated photons
from the source and f is the fractional angular acceptance
cone of the opposed analyzer-detector sets. The joint trans-
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mission probability P.(®) is given in Eq. (40) and 7 is the
detector efficiency for the analyzer transmitted photons Cor-
respondingly, without analyzers, the coincidence rate is

=Rzf 7{ 7E)- 43)

The notable feature of this expression is the efficiency ( 7g)
associated with the detector intersecting an emission en-
semble member. The other detector intercepts the full
complement vy for which detection efficiency is 7.

This photon-specific dependence of detection efficiency is
related to the relative interaction cross section of the photon,
which is a function of its A, arc span. As the photon propa-
gates through a detector, the wave frequency mediates the
rate at which the excitation migrates to random points along
A, . Accordingly, as the wave progresses a short distance in
the detector, the excitation rapidly reaches the entirety of the
A, arc span. (At optical frequencies, the requisite distance is
on the order of several micrometers.) Moreover, this distance
is further diminished as the phase velocity exceeds the group
velocity since the latter gives the average excitation velocity
along the propagation axis.

Consequently, the effective cross section of interaction
presented to the detector for a given photon is proportionate
to that photon’s packet arc span A, . Over the range that a
detector exhibits a A -proportionate efficiency, the detector’s
response is defined as having the property of linearity. From
the averaged A, values of the {yg} ensemble members, the
detection efficiency

2
(me)=Fyn=—_n. (44)

The quantity {7z) did not arise in R(@®) because the
transmission of vy through the analyzer is accompanied by
the associated packets condensing along polarization axes.
The history of the incident g arc span is erased in the pro-
cess of transmission. The emergent photon is a full comple-
ment member of an analyzer emission ensemble {7,} and
consequently is detected with an efficiency 7. The detection
efficiency of the yy photons is naturally “enhanced” in the
process of transmission through an analyzer. It may be
readily appreciated that these results are independent of the
amplitude coefficient b.,. This independence is consistent
with the analyzer mteractlon phenomenon we considered
earlier.

The ratio of the Eqs. (42) and (43) coincidence rates gives
the expression for the “joint probability”

RzfP(©)n* _1
0 Rrfong) 2

We then have agreement between the locally real represen-
tation and quantum mechanics. This outcome clearly de-
pends upon the linearity of the detector’s efficiency with re-
spect to the intercepted photon’s arc span as expressed in Eq.
(44). The property of linearity is compatible with *“low effi-
ciency” detectors. Nevertheless, the range of linearity is
bounded and detectors beyond that boundary are predicted to

R(O©
oy (@)=

cos’®. (45)
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yield a joint probability different from that of Eq. (45). This
predicted difference was considered earlier [24].

More specifically, the locally real representation predicts
that the Eq. (45) result is necessarily violated only when
(mg)>2/m (63.7%) since linearity would require >1 for
full complement photons. Equivalently, the detector effi-
ciency must exceed the efficiency

12
<7,,,,>=5(;+1)~81.8% (46)

for an equal population mixture of yg’s and full complement
¥¢’s. Equation (46) demonstrates that the locally real repre-
sentation presented here is testable with respect to quantum
mechanics.

If linearity is maintained up to the maximum limit of
(mg), then the predicted difference must manifest itself as a
convergence of the 1/2 coefficient in Eq. (45) to 1/7 as (77g)
progresses from 2/ to 1 while 7 remains at 1.

However, it should be stressed that the Eq. (45) result,
which is in agreement with quantum mechanics, remains
consistent even with presently available detectors commonly
regarded as “high efficiency.” For example, a detector with a
90% efficiency for full complement photons would, by lin-
earity, be expected to exhibit an average (2/7)9%0%
~57.3% efficiency for the {yz} ensemble members and,
with (7,,)~73.6%, the Eq. (46) condition is not exceeded.

III. LOCALLY REAL PARTICLE STATES
A. Introduction to particle states

We consider here the construction of locally real particle
states in analogy to these of photons. We will examine spin 3
particles, but our results are readily extendable to particles of
different spin composition.

The construction begins in the rest frame of a particle
with the fundamental entity -of a spin packet defined on the
vacuum field of oscillators in random ground state motion. A
spin packet is characterized by rotational coherence of
ground state oscillator motion in a plane about some speci-
fied pomtas depicted in Fig. 5(a). That point can be selected
as the ongm of a coordinate frame. A bivector s, extending
from the origin and normal to the rotational plane, specifies
the orientation and sense of rotation of the spin packet. The
intersection of the particular bivector s on the unit sphere
designates an infinitesimal coriic intersection area or, equiva-
lently, a solid angle a 5. The planar infinitesimal angular arc
5 of ag is of particular utility and, in relation to the spin
packet, is functionally analogous to the & quantity for a pla-
nar wave packet with respect to the construction of particle
states.

The set of all variously oriented spin packets at a common
point map their associated a; to cover a zone on the unit
sphere and collectively define a spin structure. (The zones
we shall be considering are defined as the spherical surface
between a plane transecting the unit sphere and a parallel
plane tangent to the sphere. The point of tangency defines the
pole of the zone. The orientation of this pole is a critical
specification.) The phase of the rotational coherence is the
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FIG. 5. Schematic representation of spin % particle. For a con-
stituent (a). spin structure, a rotational oscillator coherence at the
origin constitutes a spin wave packet characterized by a bivector
intersecting the unit sphere over some a s solid angle. Only a single
typical spin wave packet is depicted. The set of all spin wave pack-
ets covers a spherical zone of planar arc span A, that defines the
spin structure. A particle propagating along an axis (x) consists of
(b) a sequence of spin structures with fixed orientation but varying
in rotational phase and coherent oscillator density (collectively
scaled by an amplitude coefficient &,).

same on all spin packets of a particular spin structure. The
specification of a particular spin structure includes the asso-
ciated zone’s total planar arc A, and the zone’s pole orien-
tation 6, ,¢, in spherical coordinates. These three quantmes
are ﬁeld variables of a particle. For a full complement spin %
particle, the solid angle of the spin structure’s zone is 2,
giving a planar arc A, = 7.

We shall have frequent occasion to consider here particles
emitted from a source such as a Stern-Gerlach analyzer. As a
particle is emitted, the spin structure is replicated along the
propagation axis as shown schematically in Fig. 5(b). These
spin structures are all identical with respect to a particular
particle’s fixed values of the A P 01, »Pp field variables. How-
ever, the phase of the spin structures varies along the propa-
gation axis chosen here as x. An amplitude coefficient b,
constitutes an additional field variable that scales the ampli-
tude of the physically realized spin structures. Additionally,
there is typically a dispersion of values for canonically con-
jugate variables such as x and p, (the momentum component
on x). Superposition over this dispersion for constituent
waves yields a relative density of coherently moving oscilla-
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tors on the individual spin structures that varies as a function
of x. These variations in the spin structures along x are given
by the configuration space wave function ¥(x,t) on =0
associated with the standard quantum formalism (but not
with its probabilistic interpretation).

We then identify ¥ as the descriptor of relative phase on
these spin structures as a function of x. The envelope ¥*¥
provides a measure of the density of coherently moving os-
cillators on particular spin structures again as a function of x.
The density over the entire envelope is scaled by a factor of
b2,

7 The set of these spin structures constitutes the total wave
structure of a particular particle. In the locally real represen-
tation, we are reminded that, for a particular particle, the
field variables A P Hp »¢p as well as b p are some fixed values
the instant emission occurs and functionally ¥,.,
=‘I’(x,t;Ap »0,,¢p,b,). This total wave structure together
with an excitation state, instantaneously residing on one of
the spin packets located on one of the spin structures, speci-
fies that particular particle. The excitation migrates on the
coherently moving oscillators of this wave structure with a
relative probability along the set of spin structures given by
V*¥ and a random probability on any particular spin packet
of the spin structure on which it instantaneously resides. As
with photons, both of these probabilities as well as analyzer
transmission probabilities are independent of the amplitude
coefficient b, . The primary benefit derived from considering
b, in the present context of single channel analyzers is only
to emphasize that the wave structure of a particle is a real
scalable entity.

We have then a general physical representation of the par-
ticle that is closely analogous to that of the photon. Measure-
ments of canonically conjugate variables such as x and p, on
a large number of similarly generated particles effectively
sample the instantaneous values of those variables assumed
by the excitation on those particles. The collective set of
such measurements can, for example, reconstruct the enve-
lope of ¥*(x,)¥(x,f) in configuration space since this en-
velope is essentially identical for all of the similarly gener-
ated parﬂcles aside from the scale factor introduced by b2
That scale factor does not alter the relative probabilities of
the excitation on a particle’s wave structure.

As with photons, the relationship of Ax and Ap, uncer-
tainties obtained from a coHective set of measurements on
the canonically conjugate x and p, variables is a conse-
quence of the classical uncertainty associated with real
waves in their composition from harmonic waves expressed
in dispersions of those variables.

The specification of a particular emitted particle’s spin,
however, is given by fixed values of the field variables
A,,68,,¢,. We shall demonstrate the spin measurement out-
come for particles as a function of these variables in close
analogy to photon polarization measurement, but our pri-
mary task will be to derive the formalism that assigns the
fixed values of these field variables to the emitted particles.

‘This derivation for particles follows consistently from that of

photons.
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The formalism we seek generates a wave function ¢ at
the emission source for £<<0. An ensemble of particles hav-
ing the proper frequency distribution of the allowable A, and
6, values is specified by ¢ (and the spherical coordinate
angle ¢, assumes a random value on [0,277] in our present
representation). In a stochastic process at =0, a random
ensemble member described by ¥ (x,#;4,,,0,,¢,) is emitted
with fixed A, and 6, ,¢, values.

The emitted particle also has some particular value of
amplitude coefficient #,. However, as with b, for photons,
the value of b, is not directly related to the process of con-
structing ensemble states which is our principal objective. In
further analogy with photon states, the excitation probability
on the particle’s wave structure and the particle’s transmis-
sion probability through an analyzer are both independent of
b,. The primary remaining benefits derived from consider-
ing b, in the present context of single channel analyzers are
only to further emphasize that the wave structure of a particle
is a real scalable entity and to gain some measure of physical
insight into particle structure and analyzer interaction. Since
the close analogs to these subjects have both been explored
in our treatment of photon states, we will forego here any
similar extensive examination for b, .

B. Analyzer emission of particles

The Stern-Gerlach analyzer for spin } fermions is a two-
channel analyzer. The present treatment of analyzer emission
and correlated particles requires only consideration of single
channel transmission with the other channel blocked. As with
our treatment of photon analyzer emission and correlated
photons, we defer a more detailed consideration of (spin)
packet transmission in analyzers with both channels open to
a subsequent treatment that provides a locally real represen-
tation of quantum mechanical spatially separated superposi-
tion states.

We begin with a randomly oriented full complement par-
ticle incident on an analyzer with a single open channel. For
random choices of the fixed azimuthal 6, values, there are i
probabilities that 6,< /2 and that 6,> 7/2. If we select the
analyzer’s open channel axis to be along its positive mag-
netic field + B=+z, there is a 1 probability that the parti-
cle’s spin packet structure will intersect +z. When this in-
tersection occurs, spin packets from this structure and the
excitation condense to the +z axis (in é-form analogous to
that of photons) and propagate through the analyzer.

Conversely, there is a 1 probability that the spin packet
structure will intercept the analyzer’s —z axis. In this case
the excitation is absorbed as it proceeds along the blocked
channel while residing on the spin packets condensed on
—z and no detectable particle emerges. (Nevertheless, spin
packets still condense along the +z axis and an “empty
wave” ensemble member is emitted by the open channel.)

For the transmission case, we designate the S-form par-
ticle propagating in the analyzer as the generator particle
Pg- As p, emerges from the analyzer, its 6-form spin packet
along +z [associated with the basis vector |vy) in a 2N
(=2m/5) dimensional Hilbert space] generates a set of en-
semble emission state vectors
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|y =cos| =~ |[vi)- (@7

The set of |v;) are orthonormal basis vectors associated, re-
spectively, with @=k§ for integer values of k where |k &
<. The half-angle cosine factor in Eq. (47) gives the ap-
propriate coefficient for the rotational projection of a bivec-
tor quantity such as the spin packet. (The associated Hilbert
space becomes infinite dimensional when we ultimately take

the limit §—0.)
The amplitude of a projection state vector | i) is

(vl ‘ﬁk):COS( ];—5) (48)

and is equivalent to the norm of |i),

ké
o= (g0 2=cos| 7). )

The probability of an ensemble spin packet at |v,) is given
by the squared amplitude

ké
diy=cos| ). 50

Through the projective process, the right side of Fig. 2 (i.e.,
6=0) is the azimuthal spin packet probability in any plane
inclusive of the magnetic field axis +B= +z upon applying
the alternative quantities in parentheses in the figure. This
plane can be chosen as xz without loss of generality. In

“spherical coordinates, the azimuthal dependence can be de-

fined entirely on the positive value range [0,7]. However, in
the present case we can reflect the spin packet probability
about the +z axis. From this reflection, we obtain an unal-
tered cos?(6/2) spin packet probability in the xz plane where
6, now as a polar coordinate about z, can assume positive
and negative values in close analogy to the role of @ in the
photon’s planar wave packet probability. Figure 2 is then
dually applicable to photon analyzer emission processes and,
upon applying the alternative quantities, to particle analyzer
emission processes.

Similarly, we can also invert the #<<0 contour without
altering the spin packet probability in the xz plane. The par-
ticle’s spin packet probability”contour with this modification
is, likewise, closely analogous to the photon’s planar wave
packet probability following a comparable inversion.

There is, nevertheless, a significant distinction between
the packet probabilities of photons and of particles. The com-
plete set of the photon ensemble planar packets associated
with polarization analyzer emission lie entirely in the plane
orthogonal to the propagation axis. Accordingly, Fig. 2 ap-
plied to photon analyzer emission, in addition to giving the
angular packet probability, also represents the angular distri-
bution of the entire set of planar packets. Additionally, be-
cause a complete set is given, the planar packet composition
of the {y,} members as the rows of the Fig. 2 modified
contour is immediately identifiable.
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Conversely, while the Fig. 2 modified contour is also the
spin packet probability in any azimuthal plane (i.e., a plane
inclusive of +7z), the actual distribution of spin packets is
three dimensional and must be discerned from the probabili-
ties. Accordingly, the spin packet rows each correlate respec-
tively with the packet probability of full complement (A,
=) ensemble members p, of {p,}. However, the orienta-
tion of each row is the consequence of rotational averaging
of a particular p, about z (through ¢), where we are re-
minded that the orientation of a row is equivalent to the 6,
bisector angle at the row’s center. The p, orientation prior to
rotation is not typically the same as its probability orientation
in Fig. 2.

The transformation from a presently unknown distribution
of ensemble members to the Fig. 2 probability of ensemble
members may be derived from an examination of a single
arbitrary {p,} member at some fixed orientation 6, . We can
choose the prerotation plane of that p, to be xz without loss
of generality. Then the zone of p, is shown in cross section
in Fig. 6(a) and the packets of this zone intersected by the xz
plane are depicted in Fig. 6(b) as a function of 4.

In order to obtain the associated packet probability, p,
must be rotated about z from its present orientation ¢ =7 to
¢=3 /2 while keeping 0, fixed. The p, packets intersected
by the xz plane averaged over this rotation give us the packet
probability of some specific row in the Fig. 2 modified con-
tour. The transformation, computed for this arbitrary p,, al-
lows us to map from the {p,} with all members oriented in
xz to the (postrotation) packet probabilities of Fig. 2. Note
that symmetry allows us to confine the rotation to the ¢
=[r,37/2] quadrant of the xy plane. The ¢=[ 7/2,7] quad-
rant gives a redundant result. Alternatively, if we had se-
lected instead a 0p>0’ a rotation in the ¢=[0,7/2] quadrant
would have sufficed.

For calculational purposes, we will leave our arbitrary p,
oriented in the xz plane as in Fig. 6(a) and, instead, perform
the requisite rotational averaging by sweeping the vector r
along the base surface of p, from an azimuthal angle of 6, at
¢=0 (in the xz plane) to o= /2 along the +y axis where
the azimuthal angle of r increases to 7/2 as shown in Fig.
6(c). Clearly, the averaged azimuthal value of r over this
rotation is some angle intermediate between 6, and /2.
This value is equivalent to the maximal azimuthal extent 6z
of one of the packet probability rows in the upper half of Fig.
2.

Then, qualitatively, the Fig. 6(a) p,(6,) ensemble mem-
ber, with its initial Fig. 6(b) row of xz packets, is displaced
(transformed) to the right to @5 after rotational averaging as
indicated in the figure.

We now turn to a quantitative determination of the 8,
— @y transformation. The base of p,(6,) in Fig. 6(a) along
which r is swept is the plane x/z=tan 8, as defined in Fig.
6(c). After rotation of r through some ¢, we have

P Z X COos ¢
tan C_L_LtanOA—tanOA'

1)

The complementary angle fz=7/2— 0. represents the
maximal azimuthal extent of p,(68,) at ¢. From Eq. (51)
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FIG. 6. Spin structure orientation of typical particle ensemble
member (analyzer emission) prior to rotational averaging (a) as a
zone in xz plane and (b) in corresponding polar angle representation
showing 6,—(05) postaveraging translation. To rotationally aver-
age the typical spin structure, (c) sweep r along zone “base” from
xz plane to yz plane.

tan 64
cos @

(52)

03(0A,<P)=tan_1(

and the probability of 8y over the entire rotation ¢=kA ¢ is

7 (2A¢)
(B)=— 2 65(64.kAp)AP
k=0

2 (=2
=;f 05(84,0)de
0

. [ 8
- -1. —_——
2cos” /1 o (53)

We recognize (6z) as the maximal extent in 6 of the en-
semble member packet probability rows in the upper half of
Fig. 2. The inverse of Eq. (53),

-, (0)
T 4

6 A= TS
gives us a transformation that can be applied to these prob-
ability rows to obtain the corresponding (prerotation) maxi-
mal @ extent of the ensemble members oriented in the xz
plane. Symmetry considerations permit application of this
transformation to the entire Fig. 2 modified contour, i.e., the
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FIG. 7. Analyzer emission ensemble spin packet distribution
showing linear @ dependence of member orientations (a) in a polar
representation, including postaveraging probability envelope
(dashed line) and (b) as a set of zones in the xz plane.

complete 6 extent of the members. The cross-sectional dis-
tribution of the {p,} ensemble members oriented in the xz
plane is shown in Fig. 7(a) as a function of §. We readily
identify the underlying ensemble members as a set of spin
structures linearly distributed in @ by the Eq. (53) transfor-
mation.

As a consequence of our conversion from azimuthal @ to
polar 8, we see that in the final construction of the ensemble
members, the upper and lower sets of rows in Fig. 7(a) are
mutually redundant. Either set, upon rotational averaging
over a full =21, generates an azimuthal (not a polar) angle
probability of packets in agreement with the azimuthal prob-
ability shown in Fig. 2 for 6>0.

Then, an elegantly simple ensemble consisting of a set of
full complement particles with orientations linearly distrib-
uted in azimuthal @ over [0,7/2] is associated with emission
from a Sten-Gerlach analyzer with a single open channel
[see Fig. 7(b)]. The members are also randomly distributed
in @ over [0,27], but this aspect is not depicted in Fig. 7(b).

For analyzer emission of particles, the laboratory frame
angle ® with respect to the +z=+B axis of the analyzer is
identical to 8 used in the construction of the ensemble. Simi-
larly, the analyzer’s angular orientation in the xy plane of the
laboratory frame is ® = ¢. Given these equivalences, we can
substitute ©,® for 6, ¢. The rationale for this substitution is
realized when we treat correlated particles for which ¢ and ¢
assume the role of integration variables.

A subsequent Stern-Gerlach analyzer A’ rotated from A
by some azimuthal ® then serves as an analyzer of the A
output. From the construction of the ensemble, we obtain a
cos’(®/2) probability of transmitting A emission ensemble
members through A’ in agreement with the probabilistic in-
terpretation of quantum mechanics.

However, in the locally real representation, particles emit-
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ted from analyzer A are not probabilistic binary quantum
objects with spin up or spin down but are, instead, real enti-
ties stochastically selected from {p,}. An arbitrary ensemble
member p, has a full complement spin structure with a ran-
dom orientation over ® =[0,7/2] and ®=[0,27] of some
0,.9, (=6,,0,). At the instant t=0 that particle p, is
emitted from A, the outcome is fully determined for trans-
mission through a subsequent Stern-Gerlach analyzer A’, ro-
tated azimuthally by © at some @ with respect to A. As with
photons, the outcome is independent of the amplitude coef-
ficient.

C. Correlated particles

In our investigation of correlated particles, we consider a
process in which a pair of emitted spin 5 particles carry a net
angular momentum of zero. The spin states of these particles
are then expected to be opposite.

In analogy to analyzer emission of particles and to photon
states, a correlated particle pair is identified as an indepen-
dent generator particle p; and a dependent emission particle
PE- As in the construction of correlated photon states, pg is
a member of an ensemble {pg}.

Also in further close analogy to photons, the generator
particle p,, in analyzer emission is physically constrained to a
S-form within the analyzer along the transmission channel
axis whereas no such constraint is present for the correlated
generator particle ps which is created as a full complement
particle with A,=7. This full complement ps, unlike the
d-form p,, presents an angularly extended generator source
contributing to the construction of {pg} spin packets as
shown in the Fig. 3 cross-sectional depiction upon applying
the alternative quantities in parentheses.

Furthermore, within the closed system of any p¢,pg pair
emitted in free space, the orientation of the pair is random in
the laboratory frame as defined by the pole of, e.g., pg. As
in the case of correlated photons, we find that it is expedient
to transform to the particle reference frame K in which pg
has a fixed orientation. Initially, for the convenience of com-
puting projections, we choose to align the spin packet arc
span A, ‘of p; with the angle 6 in K spanning O to 7 as
shown in Fig. 3. (Later, we will rotationally translate § as we
previously did for correlated photons.)

The correlated particle source is situated between opposed
Stern-Gerlach analyzers A; and A, that have their respective
magnetic field B, and B, vector axes relatively rotated by ©.
Aside from this relative angular displacement, the vectors B,
and B, assume random orientations in K for any particular
pair of correlated particles.

Then, Fig. 3 is the probability of spin packets for 6—0 in
an arbitrary plane in K, such as xz with 6 presently refer-
enced to +x, and the rows define the ensemble members
transecting that plane. The functional form of the probability
envelope is yet to be determined. We must also ascertain the
full three-dimensional probability and distribution of the en-
semble members and then calculate the Stern-Gerlach ana-
lyzer joint transmission probability over the ensemble before
finally calculating the joint (detection) probability.
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Symmetry properties of the correlated pg and {pr} mem-
bers arising from zero net angular momentum require that
the xz spin packet probability be maintained upon rotation
about +z. Accordingly, rotation of the Fig. 3 probability
immediately gives the full three-dimensional probability of
the ensemble members as a set of coaxial zones oriented at
+z. Moreover, rotational symmetry imposes equivalence of
spin packet probability with spin packet distribution for
{pe}. We saw that this equivalence was not applicable to
{pe}-

However, before proceeding with the calculation of the
ensemble state vector for this set where we have an infinite
dimensional Hilbert space, we temporarily revert to a coarse
é example in order to demonstrate calculation of the en-
semble state vector with a finitely countable number of spin
packets as we did for correlated photon states. We shall also
express angular quantities in degrees as a reminder that we
are examining this coarse 6 example.

In the particle reference frame K we choose §=60°,
which gives three angular increments for a full complement
particle in analogy to the choice of §=30° for photons. The
corresponding Hilbert space is six dimensional in spanning
360°. For the emission ensemble we have an orthonormal set
of basis vectors |v;), |v,), and |v3) in Hilbert space that
can be respectively associated with the orientations
+30°, +90°, and +150° in a plane that we can choose as
xz without loss of generality. The orientations are defined as
polar angles measured from the +x axis.

The respective basis vectors at |v4), |vs), and |vg) are
associated with the ps spin packets at the supplementary
angles +210°, +270°, and +330°. The generator spin
packet bivector at |vg) is physically antiparallel to an emis-
sion spin packet bivector at |v3). Effectively, |vg) contrib-
utes a zero angle projection (k=0) to the emission ensemble
at |v;). Similarly, the |v¢) contribution to the emission en-
semble at |v,) is treated as a 60° projection (k=1).

More generally, the projection angle from the basis vector
of the generator packet to a particular basis vector of the
emission ensemble is computed from the supplementary
angle of the generator packet basis vector. As a result, par-
ticle projections [Fig. 8(a)] are computed in close analogy to
photon projections (Fig. 4). (In the latter case, transformation
to a supplementary angle basis vector in computing projec-
tions was not essential with regard to the calculational for-
malism because of the bidirectionality of the planar wave
packets but would, nevertheless, have been appropriate from
the physical perspective of the 7 phase differential between
Yc and yg.)

Then, projecting the ps generator spin packets through
kS, k=3, 2, and 1 in Hilbert space, yields subspace pro-
jections of the emission particle ensemble state vector
|#1), |2), and |¢3), respectively, where | ;) is constructed
from the single 120° projection of the generator packet at
lve) to |vy). Similarly, |¢,) is the 60° projection of the
generator packets at |vs) and |vg) to |v,) and |v,), respec-
tively, and | ;) is the 0° projection of the generator packet
at |v4), |vs),and |vg) to |vy), |v2), and |us), respectively.
These projections give
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FIG. 8. Correlated particle example for §=60° of (a) ensemble
spin wave packet projection computation in an azimuthal plane, (b}
schematic three-dimensional representation of ensemble spin wave
packets with six singly occupied circumferential sites and one dou-
bly occupied polar site, and (c) joint transmission probability cal-
culation giving 8/8, 6/8, 2/8, and 0/8 when analyzers are relatively
rotated by 0°, 60°, 120°, and 180°, respectively.

o) =cilvy), (55)

[y =cilvy)+calva), (56)

and
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|3)=cilv1)+calva)+eslvs). (57

The norms of these projections are

ké
Vo=l P=cos| 5 | 9

as in analyzer emission, but the |¢;) are now constructed
over the extended generator states of p . Imposing Eq. (58)
on Egs. (55)—(57) we have

120° 1
loall=Cet "2=cos( 5 )=5, (59)
60°\ 3
lod=let+cil=cod 5 )= 5 @
and
2, 2. 2912 0°
l¢sll=[ci+cz+e5] " =cos > =1, (61)
which yield the |¢,), |#,), and |¢3) coefficients,
1 1
C1=C3=5, Cr=—"Fm=. (62)
V

Since |i;) is a projection into a subspace spanning a full
complement set of basis vectors, it is equivalent to the cor-
related particle superposition state

1 1 1
Il//E)=|¢'3>=5|Ul>+$|02>+5|U3) (63)

for the ensemble.
The squared amplitudes,

1 1
<U1|*//>2=<Us|‘//>2=z, <Uz|¢>2=§ (64)

specify the relative ensemble spin packet probabilities in an
azimuthal plane as shown in Fig. 8(a). An inspection of this
coarse =60° example demonstrates that the spin packet
probability is functionally consistent with sin 6 at the indi-
cated points following normalization. From related results
for photons, we can readily verify that in the limit as 6—0
the normalized set of c,~2 values, i=1 to N/§&, is vanishingly
close to sin 6.

Although we readily obtain cos*(k&2) packet expecta-
tions of 1,2, }, and 0 with k8/2=0°, 30°, 60°, and 90°,
respectively, we must remember that Eq. (64) and Fig. 8(a)
represent packet probabilities in an arbitrary azimuthal plane.
However, zero angular momentum of every correlated pair
PGP imposes rotational symmetry upon the full distribu-
tion of packets. Accordingly, Fig. 8(a) is also the distribution
of spin packets in an arbitrary azimuthal plane and we can
immediately construct a full three-dimensional distribution
of ensemble spin packets mapped onto a 27 hemispherical
surface as shown in Fig. 8(b).
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At +z in K, the central (pole) packet site is doubly occu-
pied while the remaining six circumferential sites are singly
occupied. Symmetry with p further facilitates identification
of the two ensemble members. One member consists of the
full complement set of seven spin packets while the other
member is the single additional spin packet at the +z pole.
Clearly, the circumferential distribution of six sites is not an
exact rotational symmetry about +z and the mapping itself
is not accomplished without some minor areal distortion of
the a 5. However, both of these concerns are attributable to
the finiteness of the present §=60° example and are re-
solved as §— 0. The associated generator particle p is rep-
resented by a full complement seven-site 27 hemispherical
zone oriented at —z in K.

We want to use this three-dimensional distribution to
compute joint transmission probabilities when a correlated
particle source is positioned between opposed Stern-Gerlach
analyzers A, and A,. The respective magnetic field vectors
B, and B, of the analyzers are rotated by @ relative to each
other, but these vectors are otherwise random in K. We
choose spin up as the open channel of A; and spin down as
the open channel of A,. In the present representation, the
probability for joint analyzer transmission is then equiva-
lently the two-vector probability of intersecting a member in
the {pg} distribution with B, and intersecting the fuil
complement p; with —B,. This determination can be greatly
simplified by symmetry properties. Since {pg} is rotationally
symmetric, we can azimuthally rotate the pole of p; by ©
+ 1 at any ¢ and observe that the joint intersection of a
single vector with {pz} members and a rotated p is equiva-
lent to the above two-vector probability problem [see Fig. 9].

The single vector joint intersection is readily evaluated in
the present §=60° example. When pg is rotated by O+ 7
about {pz} where ®=£k45=0°, 60°, 120°, or 180°, the
joint overlap of p; with {pz} is calculated in each case from
the transection of the {pg} spin packets by a plane. That
plane is identified as the base of the p; hemispherical zone.
The {pg} transections for these @ are depicted in Fig. 8(c).

For ®=0°, the joint overlap is all eight spin packets and
the joint transmission probability is

1
Py(0°)= 5 (8), (65)

where the normalization fact‘oﬁr 28 accounts for all of the spin
packet sites that must be interrogated by the single vector.
Since there are two ensemble members, {pr} represents 2
X7 sites. However, there are an additional 2X7 sites that
must be included representing the 50% chance of the single
vector not intersecting {pg}. Similarly, we have

1 1
P,(60°)=55(6),  P,(120°)=52(2),

1
P,(180°) = 52(0). (66)

These probabilities can be summarized and reorganized as
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FIG. 9. Calculational technique for determining correlated par-
ticle joint transmission probability by rotating p; zone through ©@
+7in K.

g 3k 1/4\32F 14 kS
Pp(k5)=§ 1=21 (Ui|¢>2=§(7)i=21 C%=§(7)cosz(7).
(67)

The origin of the extracted 3 factor in Eq. (67) may be
identified as the probability of intersecting the 27 solid
angle of p; at some random orientation (e.g., that of the axis
for a Stern-Gerlach channel). The adjacent factor is the frac-
tional occupancy of spin packets in {pz} designated as F,.
Since the probability of encountering a spin packet on {pz}
is unity at the polar site and % for the six circumferential
sites, we have F,= 7 LA+ix 6) =$%. The summation factor is
recognized as equlvalent in form to the corresponding sum-
mation factor in Eq. (35) for photons but here, for §=60°,
yields cos®(k&2). This similarity originates with the con-
struction of {pz} states from projections in azimuthal planes
in analogy to the construction of { yz} states from projections
in the plane orthogonal to the propagation axis. Then, despite
the three-dimensionality of {pz}, probabilities in azimuthal
planes are functionally analogous to the probabilities associ-
ated with {yz}. The functional analogs of these probabilities
are related by a 8— 6/2 change of variable. This is exempli-
fied by the Fig. 8(a) {pz} probabilities which can be fitted to
a sin 6 function. We recall that the Fig. 4 {yz} probabilities
can be fitted to sin(26).

The functional aspect of P,(k&) that is uniquely related
to the three-dimensionality of spin packet structure resides in
F,.
pUpon proceeding toward the limit §—0, we have

N-
P, (k&) =-;— 2 (vilve)? =—F cosz(k;) (68)

for arbitrarily large 2N=2/6 in a 2N-dimensional Hilbert
space where N basis vectors span a full complement spin
structure zone. Recognizing that the (exact) value of the spin
packet occupation fraction arises from the full three-
dimensional distribution of spin packets, we have left that
value unspecified for the moment as F, .

When we reach the limit §—0, the corresponding Hilbert
space is infinite dimensional and the integral form of Eq.
(68) in analogy to Eq. (38) is
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-0 1 ,[©
Pp(®)=5Fp.fo p(H)dH 5 F,cos =) (69)

where E,(6) represents the spin packet probability. The so-
lution to Eq. (69) is E,(#)=sin # and gives the functional
form of the Fig. 3 {pz} probability envelope.

We are reminded that projections for {pz} were computed
in an arbitrary azimuthal plane which was selected as xz. In
these projections, § was treated as the polar angle referenced
to +x in K. This choice was convenient in computing the
sin @ {pg} probability envelope. However, since ¢ is merely
an integration variable, we are free to rotationally translate
6=0 by m/2 to +z. In an azimuthal plane we can treat 6 as
a polar coordinate about +z and spin packet probabilities are
then functionally given by E,(6)=cos 6. This cos @ spin
packet probability is applicable to an arbitrary azimuthal
plane, but because of zero angular momentum for all corre-
lated pairs, we have rotational symmetry about +z which
requires that cos @ is equivalently also the spin packet distri-
bution in any azimuthal plane. (This equivalence of spin
packet probability and distribution in azimuthal planes was
not applicable in particle analyzer emission.)

The construction of the members of the correlated particle
emission ensemble {pz} is then trivially obtained from the
spin packet distribution in an azimuthal plane, unlike that of
the analyzer emission ensemble {p.}. Zero net angular mo-
mentum for all p;,py correlated pairs requires rotational
symmetry about the p; orientation. This symmetry together
with the spin packet contiguity identifies the Fig. 3 spin
packet expectation rows as the ensemble members of {pz}
with each row representing the member’s spin packet distri-
bution in any arbitrary azimuthal plane. The three-
dimensional distribution of the ensemble members consists
of coaxial zones about +z in K with respective planar arc
spans A, given by the Fig. 3 rows. The frequency distribu-
tion or density of ensemble members is given by cos § as a
function of @ (=<w/2). The {p;} members, with a continu-
ous spectrum of A, values ranging from 0 to 7, have an
average ensemble member planar arc span (A =2

In the particle frame K, all {p;} members and p; are
oriented at +z and — z, tespectively, as shown schematically
in Fig. 10. In the laboratory frame, the orientations of p; and
pr for each correlated pair are mutually antiparallel but are
otherwise random. “

As we seek the joint trafismission probability, we must
proceed with care. Equation (69) is explicitly constructed in
an azimuthal plane of K. This restriction is perfectly accept-
able with regard to ascertaining the azimuthal plane distribu-
tion of ensemble members (and the spin packets) since that
distribution is necessarily rotationally symmetric for zero net
angular momentum. However, treating Eq. (69) as a joint
transmission result effectively assumes that the opposed
Stern-Gerlach analyzers have their B; and B, axes (rotation-
ally separated by some ®) in the same azimuthal plane in K.
This assumption is not generally valid since the B,,B, pair
(aside from a fixed relative © rotation) has totally random
orientation in K. Accordingly, we must rigorously compute
the joint analyzer transmission probability P,(®) for appro-
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FIG. 10. Correlated particles in particle frame K showing repre-
sentative ensemble members of {p} with a cos ¢ distribution of A,
arc spans and antiparallel mate pg .

priately randomized orientations of the B, ,B, pair.

We again use the calculational methodology of rotating
pc by ®+ 7 with respect to {pg} in order to reduce the joint
transmission problem to that of a single vector intersection.
Figure 9 is still applicable.

Without loss of generality, we can select an orientation of
P in the xz plane at some arbitrary © and at = in the
correlated particle frame K. The base of the p; hemispheri-
cal zone is the plane defined by

sin 0 cos ¢

X
tan @ c=-= : (70)

cos 6

where 6 is the azimuthal integration variable in the particle
frame and O . is the complement of ®. Then 6, functionally
dependent upon ¢, is

mn@c) 1)

—=tan~1
6(¢)=tan ( pn
The transmission probability is determined by computing the
three-dimensional angular surface integral I; over the en-
semble spin packet distribution in x<<0 and also the corre-
sponding integral I, over the ensemble spin packet distribu-
tion in x>0, but bounded by the p base (Fig. 9). Symmetry
permits ¢ integration over a quadrant for both integrals and
doubling their values. The quantity cos 6 in these integrals is
effectively the density function of spin packets as determined
above and expressed azimuthally.

The normalization factor of 27 is simply the angular in-
tegral over the hemisphere. A factor of § must also be in-
cluded to account for the p transmission probability. Then
the joint analyzer transmission probability is

121,+21,
2 27

1 T . T
= ﬂfo cos f sin 0d0fm2dqo

1 w/ZJ'o(w) )
+Eo . cos @sin 0dbd ¢

P,(0)=

_l+1fﬂ'/2_2tan_ltan®c 4
T8 4m), s cos ¢ ¢
1 O, 1 Q]
= qin?— = — 2
7 Sin"—-=gcos” . (72)

The spin packet occupancy fraction in the 6—0 limit is
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41, 1
Po2m 2 (73)
which is a decrease from the 3 approximation associated
with the coarse §=60° example. From Eq. (69), we recog-
nize that F, is a } factor extracted from the ; numerical
coefficient in Eq. (72).

The calculation of the predicted joint probability for cor-
related particles proceeds in a manner analogous to that of
photons. However, for the three-dimensional spin packet
structure, the detection interaction cross section over {pg} is
proportionate to the average area of the ensemble zones. Ac-
cordingly, the relevant parameter is F, and not (A,). With
the cross section linear to the zone area, the average detec-
tion efficiency over {pg} is

1
<77E>=Fp77=57” (74)

where 7 is the detection efficiency for a full complement
particle. Equation (74) constitutes the linearity criterion for
particle detectors. Equation (74) is dependent only upon the
angular geometrical aspects of the spin structure zones and is
not a function of the amplitude coefficient b, .

Then, with the quantities R(®), Ry, Ry, and f defined
in direct analogy to those of correlated photons, the ““joint
probability” for particles is

R(®) R P (®)n* 1 0

in agreement with the probabilistic interpretation of quantum
mechanics.

A comparison to correlated photons readily demonstrates
that this agreement is a consequence of natural enhancement,
and when {7z)> %7 the locally real representation is test-
able with respect to the probabilistic interpretation.

IV. DISCUSSION

The inherent asymmetry of the comelated locally real
states for both photons and particles, as manifested by the
packet occupation fraction, has important implications with
regard to Bell’s theorem [4} It has been shown that “nonen-
hancement” is an implicit assumption of Bell’s theorem [25].
This assumption is generally regarded as plausible since it
requires that insertion of an analyzer in the path of a corre-
lated photon or particle must reduce or, at least, leave invari-
ant the resultant detection probability. Conversely, Bell’s
theorem is not applicable to the class of hidden variable
theories exhibiting enhancement, i.e., detection probability
potentially increases upon inserting an analyzer. Accordingly,
this class has not been excluded by performed experiments.
However, theories exhibiting enhancement are not generally
perceived as a viable alternative to the probabilistic interpre-
tation because of the apparent implausibility of enhancement
and its typically arbitrary imposition in those theories. It is
therefore a critical aspect of the present locally real represen-
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tation that enhancement arises as a natural and plausible
property.

In retrospect, is of some interest here to note the compel-
ling and prognostic advice of Ferrero, Marshall, and Santos
[19] that it would be productive to examine modifications of
the standard quantum mechanical formalism in the interests
of achieving compatibility with local realism despite the suc-
cesses of the probabilistic interpretation of quantum mechan-
ics. They anticipated that these modifications would yield a
theory that naturally violated Bell’s plausible assumptions
[4,25].

Similarly, it is of further interest here that several inves-
tigations, including those of Selleri and Zeilinger [20], Lep-
ore and Selleri [21], and Ferrero, Marshall, and Santos [19],
have identified the detector low efficiency ‘“loophole” as a
likely critical aspect of a viable locally real representation.

In the present context, the testable consequences for
which the locally real representation derived here diverges
from quantum mechanics relate to the use of a detector that
exceeds the linearity criterion. Nevertheless, the divergence
is subtle in that the numerical coefficients of the joint detec-
tion probabilities Eqs. (45) and (75) are altered, but the co-
sine squared function of ® does not change. In contrast, a
more readily discernible linearization of ® dependence is
predicted for those locally real hidden variable theories con-
sistent with Bell’s inherent assumptions [4,25].

It is also pertinent here to examine the relative divergence
of the locally real representation from the quantum mechani-
cal treatment of spatially separated superposition states.
These states arise when considering phenomena involving
devices such as beam splitters and two-channel analyzers.

Quantum mechanically, the probabilistic photons and par-
ticles are divided by such devices into two states that are
necessarily represented as a nonlocal spatially separated su-
perposition state. Conversely, in the locally real representa-
tion, the outputs of these devices produce two independent
wave structures. Objectively, one structure is excitation bear-
ing and the other is empty.

When only “non-analyzer” devices such as simple beam
splitters are involved, the independent wave structures from
both output channels are each immediately compatible with
representation by the wave functions of the quantum me-
chanical formalism, e.g., ®(z,t) or ¥(x,#), but not with the
probabilistic interpretation of that formalism. However,
when the devices include two-channel analyzers, the com-
plete objective specifications of the two independent output
wave functions must now be constructed from analyzer
emission states. Each output wave function can then objec-
tively be identified as a particular ensemble member derived
from those analyzer emission states.

Consequently, quantum mechanical spatially separated su-
perposition states associated with “nonanalyzer™ as well as
analyzer two-channel phenomena can both be given a locally
real representation. (This would include phenomena that are
supposedly characteristic of purely quantum mechanical be-
havior such as “interaction-free measurement™ [29,30].) We
reiterate, though, that analyzer phenomena necessitate an en-
semble construction augmenting the wave functions ®(z,¢t)
and ¥ (x,?) of the quantum mechanical formalism.

PHYSICAL REVIEW A 65 032102

The necessary imposition of an ensemble construction on
the wave functions of the quantum mechanical formalism
was, of course, initially seen in the context of single propa-
gating entities when analyzer measurements were consid-
ered.

Clearly then, there is some profound physical interaction
that underlies the significant divergence of the locally real
representation from the quantum mechanical formalism
when analyzer measurement is considered. To understand
this divergence, we first consider a set of individual (nonana-
lyzer) detector measurements performed on a large number
of discrete photons or particles each of which is prepared
under identical experimental conditions. (The appropriate
wave function might represent a superposition of energy
states.) Individual measurements reveal a random state in-
stantaneously occupied by the excitation at the time of mea-
surement. Accordingly, the collective measurements then ob-
jectively yield the constituent states in their proper statistical
distribution.

However, from the locally real perspective, analyzer mea-
surements are distinctive in that they are noninstantaneous
processes that occur as a wave structure is incident on an
analyzer. The excitation, migrating on the diminishing con-
stituent packets entering the analyzer, locks into the S-form
superpacket forming along the analyzer’s axis if that axis
should happen to intersect one of those constituent packets.
Effectively, the analyzer inherently biases the excitation lo-
cus to the analyzer’s axis for these events. Subjectively, then,
we lose information regarding the excitation’s instantaneous
locus as the incident packets begin to enter the analyzer.

Accordingly, we postulate that analyzer measurements are
noninstantaneous processes that bias the final excitation lo-
cation to the particular state at the analyzer’s axis. If such a
process has physical validity, then the quantum mechanical
treatment that places analyzer measured states on an equal
footing with conventional detector measured states is in
doubt. That position is taken in the present paper and pro-
vides the basis for proceeding with the derivation of the en-
semble of analyzer emission states on which the excitation
may instantaneously reside prior to analyzer measurement.

V. CONCLUSIONS

We must emphasize that the locally real representation
presented here does not present any conflict with the calcu-
lational success of the standard quantum mechanical formal-
ism. We have noted that we begin with the quantum me-
chanical formalism that specifies the wave functions for
photons and particles along the propagation axis, respec-
tively ®(z,¢) and ¥(x,t) in configuration space, and treat
these wave functions as incomplete. We derive an ensemble
wave function associated with a source that yields emission
states. The wave functions of these emission states are natu-
rally augmented with field variables that define outcomes for
measurement processes normally requiring the invocation of
a nonlocal probabilistic interpretation. However, these aug-
mented emission state wave functions remain fully consistent
with the standard quantum formalism (but not with the
probabilistic interpretation) as valid solutions of the appro-
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priate wave equation and boundary conditions. The com-
pletely specified wave function of an emitted photon or par-
ticle objectively determines transmission through a
subsequent analyzer. The resultant locally real representation
gives exact agreement with quantum mechanics for photon
transmission through successive polarization analyzers, for
particle transmission through successive Stern-Gerlach ana-
lyzers, for correlated pairs of photons, and for correlated
pairs of particles while providing testable consequences.
Spatially separated quantum mechanical superposition states
can also be given a locally real representation.

The construction of the respective ensembles associated
with these phenomena proceeds in a self-consistent manner.
An ensemble of states (for photons or for particles) described
by a wave function (¢ or ¢) is formed from projections in
an infinite dimensional Hilbert space at the emission source
for t<0. The states are specifications of (planar or spin)
wave packets. At =0, a random member formed from the
states of the ensemble is emitted as a stochastic process with
specific objectively real field variable values of packet arc
span (A, or A,) and orientation (6, or 6,,¢,). The wave
function is scaled by an amplitude coefficient (b, or b,).
The general wave function of the emitted member for r=0
can be expressed in configuration space [dJ(z,t;Ay,ﬁy,by)
or ¥(x,:;4,,6,,¢, ,bp)] along the propagation axis (z or
x). Effectively, the transition from the ensemble state to a
particular emission state (¢—® or y—W¥) can be defined
as “stochastic realism” [19].

For any similarly generated emitted members of the en-
semble, regardless of the fixed field variable values, the as-
sociated wave function structures (® or ¥) are all essen-
tially identical when examined only with respect to the
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configuration and momentum space variables along the
propagation axis. A measurement procedure based on these
variables for a particular emitted member may be used to
reveal a single point on the envelope of the wave function’s
squared modulus (®*® or ¥*W¥). That point is determined
by the value that the migrating excitation happens to assume
at the instant of measurement on the structure of the wave
function. When applied to many similarly generated events,
such measurements map the entire envelope of the wave
function’s squared modulus along the propagation axis.

More significantly in the present context, for a particular
discrete entity (photon or particle), with field variable values
then necessarily objectively fixed, the transmission outcome
through an analyzer (polarization or Stern-Gerlach) is fully
determined for all >0 and can be identified as *“determin-
istic realism™ [19]. Quantum mechanically, the transmission
outcomes are interpreted as evidence that these entities are
necessarily probabilistic. The perception that photons and
particles are probabilistic entities is derived from the biased
selection of a particular constituent state by the measurement
analyzer.

When the wave function (® or ¥) for a particular dis-
crete entity objectively specifies fewer than a full comple-
ment of packets (A, <w/2 or A,< ), transmission through
an analyzer increases the arc span to a full complement and
naturally enhances detectability. The correlated emission
states exhibiting this property of natural enhancement are
explicitly local in contrast to quantum mechanical correlated
states which are necessarily nonlocally entangled. The per-
ception of entanglement is a consequence of the subtlety of
enhancement.
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