
1 

QuWT 

 

CHAPTER 2 

DETECTION OF EMPTY WAVES 
QuWT-c2-220503                                 

Historically, the detection of presumptively empty discrete wave packets has 

been problematic. Methods other than those described here have been used 

to generate such presumptively empty waves. These methods commonly 

use a beam splitter to divide an incident discrete photon into two paths. If a 

detector placed on one path measures an energy quantum, an empty wave 

packet should then still be propagating on the other path if such real entities 

exist.  

That empty wave of a photon, if real, should be able in principle to cause a 

measurable effect on the occupied wave of the photon. An ingenious method 

for demonstrating such an effect was proposed by Croca et al. [318]      

However, reported experiments designed to detect these presumptively 

empty discrete wave packets have not yielded conclusive evidence of their 

existence. It is certainly not unreasonable to expect a similar difficulty in 

detecting the discrete empty wave packets generated by the polarization 

methods described here which also portends a limited utility for those 

discrete empty wave packets.  

2.1 TRANSITION TO SINGLE LONGITUDINAL MODE 

COHERENT BEAMS 

Both of these impediments, problematic detectability and limited utility, are 

counterintuitively resolved by using a linearly polarized coherent single 

longitudinal mode SLM source in place of a linearly polarized discrete photon 

source. In the optical regime, properly configured lasers can generate such 

SLM beams. 

A coherence length of a linearly polarized SLM beam is analogous to a 

discrete linearly polarized photon in several respects. Longitudinally, both 

are represented by a coherent wave structure. Individual photons extracted 

from an SLM coherence length, i.e. a single mode, have indistinguishable 

polarizations, e.g [350]. Consistent with LR, this indistinguishability implies 

that the entire SLM coherence length has some particular orientation θ in 
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analogy to the wave packet of a linearly polarized discrete photon. Linearly 

polarized SLM beams and linearly polarized discrete photon beams both 

exhibit polarization ensemble orientation distributions. That is, statistically 

each of the sequentially emitted linearly polarized SLM coherence lengths 

has an orientation θ that is in accord with a random member of a polarization 

ensemble as is the case for linearly polarized discrete photons. From these 

analogous properties of linearly polarized SLM beams and linearly polarized 

discrete photon beams it can be deduced that the described methods for 

generating discrete empty wave packets also generates sequential 

coherence lengths of single mode empty waves.  

Notably, it is the differences between SLM beams and discrete photon 

beams that yield the means for providing the detectability and utility of empty 

waves. An SLM coherence length is commonly extraordinarily longer than a 

corresponding discrete photon wave packet. In the optical regime a 

coherence length on the order of tens of meters is not unusual. Additionally, 

wave intensity on an SLM coherence length is typically many, many orders 

of magnitude higher than that of a discrete photon because of the density 

and multitude of photons on the former collectively contributing to that wave 

intensity. 

In order to quantify the intensity of the empty coherence lengths extracted 

from the incident SLM coherence lengths we must statistically compute the 

average of individual member W=sin2 θ values over a polarization ensemble 

distribution of θ orientations. The intensity of any emitted coherence length 

is randomly dependent upon the particular ensemble member orientation θ 

associated with a given SLM coherence length incident on the polarizer. That 

computed average is <sin2 θ>≈0.11 (more precisely, 0.1073). Then, with the 

incident SLM coherence length intensity normalized to unity, the individual 

sequential empty coherence lengths have an ensemble distribution of 

W=sin2 θ intensities and an ensemble averaged W=0.11.  

As a practical matter, a mere several dozen or so sequential empty wave 

coherence lengths could be used to represent a digital “1” pulse. That pulse 

would have an average wave intensity (probability flux density) closely 

approximating W=0.11. If that empty wave pulse is transmitted to a distant 

receiver where it is fully “restored” to an ordinary energy-bearing pulse, it 
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would have an irradiance (energy flux density) I that is ≈11% as large as that 

of the initial ordinary energy-bearing SLM source beam.  

 

2.2 UNITS  

For various considerations presented here both theoretical and 

experimental, it very useful to readily translate beam parameters between 

different sets of units. The intrinsic variables of irradiance “I” and wave 

intensity “W” are particularly useful in considering theoretical representations 

of beam parameters whereas the extrinsic variable of beam power is of 

practical use in experimental applications. Applied to Gaussian beams, the 

intrinsic variables commonly indicate their respective peak values along the 

beam as evaluated at the center of the beam cross section. Conversely, a 

detector intercepting a sufficiently large cross section of a beam that is 

inclusive of all significant irradiance, e.g. at a 1.5 Gaussian diameter, 

measures the extrinsic variable of the beam’s power (energy flux). In the 

optical regime that power for a laser beam is commonly be expressed in units 

such as Watts or milli-Watts.  

Beams with very low divergence lend themselves to proportionate 

translations between intrinsic and extrinsic variables whereas along beams 

with significant divergence those intrinsic variables at the beam center 

significantly decrease as the beam diverges while the extrinsic variables are 

unchanged in value.  

The above considerations have useful applications in the present context. 

For example, if a linearly polarized SLM laser beam has a power, energy 

flux, of one watt (Pwr=1000 mW), that extrinsic variable can be directly 

measured by a properly calibrated detector. If that beam is “ordinary,” i.e. 

has not been subjected to a process that would “deplete” or “enrich” its real 

particle-like (energy quanta E) aspect relative to its wave-like aspect, then 

that same detector measurement indirectly measures the “probability flux” of 

the beam. 

Probability P is the quantum mechanical construct derived from integrated 

wave intensity where intensity is the squared modulus of the wave function 

amplitude. For an ordinary discrete photon wave packet, integration over that 

wave packet yields a unit probability since a unit observable energy quantum 
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resides on that wave packet. Effectively, the quantum mechanical formalism 

assigns proportionate and equal E=1 and P=1 as the extrinsic dimensionless 

variables associated with that discrete ordinary photon.  

The extrinsic variables E and P can also be applied to a portion of some 

particular coherence length of a multi-photon beam. Integration of irradiance 

over that portion yields the inclusive energy quanta represented by E and a 

similar integration of intensity yields the inclusive probability P. For an 

ordinary beam, those extrinsic variables E and P can both be set equal to 

each other and, further, can be   normalized to unity.           

Nevertheless, as a practical matter in considering beam parameters in 

experimental configurations, extrinsic variables relating to power are of 

particular utility.  Returning to the example of the ordinary linearly polarized 

SLM beam with an energy flux of 1000 mW, since the beam is ordinary we 

adapt the quantum mechanical formalism and set energy flux proportionate 

and numerically equal to probability flux. Then the beam’s probability flux is 

represented here as 1000 mW-eq. In this adaptation the modifier “eq” is 

appended to energy flux units and represents the equivalent probability flux 

for an ordinary beam of some specified energy flux.  

If that beam is incident on a polarizer, the energy flux I emitted by the 

polarizer’s orthogonal axis ideally is zero. However, LR predicts that the 

horizontal axis output is an intensity (not irradiance) that is ~11% of the 

incident beam intensity. Consequently, that prediction translated to 

probability flux implies that a probability flux dP/dt=110 mW-eq is present on 

that orthogonal axis output.  

If that empty, totally depleted, beam is transmitted to a remote receiver and 

transiently equilibrated with an ordinary high power “restoration” beam with 

Pwr>>1000 mW, that empty beam with a probability flux dP/dt=110 mW-eq 

is restored to an ordinary beam with Pwr=110 mW.  

2.3 SLM vs MLM        

In the optical regime, lasers are most commonly of the multi longitudinal 

mode MLM type, simultaneously emitting two or more distinct modes as 

opposed to an SLM laser which suppresses all but one mode in its cavity but 

is more difficult to construct. The respective distinct coherent modes of an 

MLM laser differ from each other by very small wave length increments so 
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that over an emitted coherence length the respective modes are substantially 

mutually in-phase. As the end of a coherence length is approached, the small 

wave length differences of the respective modes progressively degrade the 

in-phase condition to the point that there is mutual incoherence of the 

multiple modes at the end of a particular emitted coherence length. 

If an MLM beam linearly polarized along 0° and comprised of N modes i=1 

to N, is incident on a polarizer that has a 90° H polarization axis, the 

projections of each of those multiple modes yield an N-fold set of H outputs 

consisting of respective empty wave modes.          

Any single “ith” mode of a particular MLM coherence length comprised of the 

N modes i=1 to N has an orientation θi that is in accord with the orientation 

of a random member of a 0° polarization ensemble. Then, even for a 

relatively small N, the number of positive θi and negative θi will be 

approximately equal. Since the amplitudes of the H output empty waves are 

each modulated by respective sin θi factors, the H output coherence length 

is characterized by approximately half of the empty wave modes being out 

of phase with the other half which results in poor restoration and detection. 

This deficiency does not occur with the use of an SLM source and for this, 

and other reasons, the use of an MLM source is suboptimal with regard to 

the utility of the generated empty waves.   

2.4 EXPERIMENTAL DETECTION OF EMPTY WAVES 

Fig. 2.1a shows the configuration that has provided a proof-of-principle 

demonstration for generating and detecting coherent empty waves in the 

optical regime. The general methodology for this configuration is examined 

in this section while a more detailed example of specific component and 

beam parameters is given in the subsequent section below.  

A vertically (0°) polarized laser beam enters from the left. The beam is 

generated by a 10 mW 532 nm DPPS single longitudinal mode SLM laser 

with ~100:1 polarization and ~50 m coherence length. The beam is strongly 

attenuated by an initial neutral attenuator Attn-1 that provides a suitable low 

beam power for the digital photometer. At a 50:50 beam splitter BS-1, the 

transmitted fraction of the beam is intercepted by a chopper wheel CW 

producing pulses with a 50% duty cycle at 40 Hz. The pulsed beam is further 
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reduced by a second attenuator Attn-2 to control the power on the pulses 

relative to that on the beam fraction reflected at BS-1. 

The pulsed beam is incident on a calcite polarizer POL that has a polarization 

axis horizontally (90°) oriented. 

Various types of polarizers suitable for use in the apparatus may exhibit a 

polarization-independent attenuation factor in addition to the conventional 

polarization-dependent attenuation factor. That polarization-independent 

attenuation factor is subsumed here into Attn-2 for purposes of calculation.  

For an ideal SLM source beam and polarizer, the pulses of the beam exiting 

the horizontal axis of Pol are comprised of empty waves, totally depleted of 

irradiance (energy quanta). The pulses have a wave intensity that is ~11% 

of the pulse wave intensity incident on Pol. As a practical matter, with non-

ideal source beam polarization and non-ideal extinction value of the polarizer 

there is a small residual non-zero irradiance (and power) still present on the 

output pulse of Pol. That residual can be reduced to vanishingly small levels 

by the use of available source beams with improved polarization and 

polarizers with improved extinction. In any case the presence of that residual 

does not detract from the utility of the present apparatus in definitively 

demonstrating the restoration of a highly depleted beam. Moreover, a small 

readily measured residual power level on the pulse beam (in the absence of 

coupling with a restoration beam) provides a very useful baseline for 

accurately quantifying the relative restored beam power. 
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Fig’s. 2.1a. Configuration of proof-of-principle demonstration for generating 

and detecting empty waves. 

The (highly depleted) pulse beam is reflected by M1-H which consists of a 

mirror mounted on a beam director equipped with a haptic actuator. The 

haptic actuator is a compact motor-based oscillator in a 10 mm diameter, 2 

mm thick enclosure that locally imparts a ~1K Hz vibration to the beam 

director. After reflection from M1-H, the highly depleted pulse beam is 

identified as the “signal beam” S. During pulse measurement that vibration 

removes the phase relation between the S beam and the beam fraction 

reflected at BS-1.  

M1-H directs the pulse beam S is directed to a 50:50 beam splitter BS-2. The 

reflected fraction of S is directed over a ~1500 mm “coupling path” to mask 

plate MK that consists of a 2 mm diameter opaque mask centered on a glass 

substrate window. At Mk the Gaussian diameter of the pulse beam S as a 

result of natural divergence is approximately ~3 mm. Accordingly, with the 

pulse beam centered on the opaque mask, approximately 60% of the S 

beam’s power on the coupling path is still transmitted through the Mk 

substrate window. 

An iris Ir adjacent to Mk presents a ~3.5 mm aperture that blocks the 

peripheral S beam but still leaves ~40% of the S beam’s original power on 

the coupling path incident on a PIN detector Det located just beyond Ir. 
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Concurrently, a fraction of the Attn-1 attenuated beam is reflected by beam 

splitter BS-1 to mirror M2. That beam fraction is identified as the “restoration 

beam” R. A two-position beam blocker BB-1 is located on the R beam path. 

When BB-1 is in position “C,” the R beam path is not blocked and beams S 

and R are coupled along the coupling path. Conversely, when BB-1 is in 

position “U,” the R beam path is blocked and is uncoupled from the S beam 

along the coupling path. 

When the vertically polarized beam R continues beyond BB-1, it is incident 

on a zero order 532 nm quartz half wave plate HWP that rotates beam R to 

a horizontal polarization. Beam R then enters a two lens pair, lens L1 with a 

25 mm focal length and lens L2 with a 100 mm focal length. A rail mounting 

of L2 permits a fine adjustment of the L1-L2 separation distance.  

A fraction of the R beam is transmitted by beam splitter BS-2 with that R 

beam spot concentric to the S beam spot. Beams S and R are adjusted to 

be mutually concentric along the coupling beam path. Components Mk, Ir, 

and Det are aligned concentric to the coupling path. 

The separation of the L1 and L2 lenses is adjusted to focus virtually all of the 

R beam power onto the mask Mk. The peripheral R beam power reaching 

the detector on the annular region between the mask and the iris should then 

be very approximately two orders of magnitude less than the R beam power 

blocked by the mask. Through that same annular region the residual S beam 

power and the R beam power are very approximately comparable. These 

relative powers are principally achieved by the choice of Attn-2 and 

advantageously contribute to minimizing the total dynamic range of critical 

pulse height measurement values.  

The Fig. 2.1a configuration together with the exaggerated Fig. 2.1b detail 

depict the mechanism by which the S beam is transiently coupled to the R 

beam. Alternative restoration methods (ref coupling patent) provide higher 

coupling efficiency but the readily implemented present method is 

advantageous for a proof-of-principle demonstration. 
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Figure 2.1b. Exaggerated, not-to-scale depiction of the beams on the 

coupling path and the adjacent components.  

As the concentric beams leave BS-2 and enter the proximal region of the 

coupling path, the beam cross sections are still approximately equal. Along 

that proximal region the highly depleted S beam equilibrates with the initially 

ordinary ΩRi=1 R restoration beam. That R beam is much more intense than 

the S beam, WR>>WS. As a result only a very small fraction of the R beam’s 

initial coupling path irradiance IRi is transferred to the S beam as the beams 

propagate further along the proximal region of the coupling path and 

equilibrate to a final common Ωf=ΩRf=ΩSf=IRf/WR=ISf/WS that is nearly unity as 

the beams approach the distal region of the coupling path. At this point the 

S beam is almost fully restored to an ordinary beam and both beams are very 

slightly depleted.     

The proximal region of the coupling path substantially provides for the 

transient equilibration of the two beams. As those beams just begin to 

propagate onto the distal region of the coupling path, their respective 

occupation values remain at that common Ωf. However, the nearly fully 

restored pulses of the S beam are not yet distinguishable from the R beam 
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because the increment of irradiance that restored those S beam pulses is 

absent on the R beam, leaving no net change of irradiance over the entire 

cross section of the two approximately equal diameter beams whether a 

pulse is present (and the S pulse has acquired that increment) or absent 

(and the increment still resides on R).  

The remedy to that deficiency is provided as the two beams progress further 

along the coupling path well into the distal region. Because of lenses L1 and 

L2, the resultant convergence of the R beam relative to the S beam 

physically separates the two beams. Both beams still retain their common Ωf 

but almost all of the R beam intensity is focused on a small central portion of 

the S beam cross section. That small central portion is blocked by a mask 

while leaving a still substantial annular region of the S beam incident on a 

detector. During a pulse, much of the increment of irradiance acquired by the 

S beam is on that annular region and is readily detected, but the concurrent 

loss of that increment from the R beam is not apparent at the detector 

because the R beam is almost entirely confined to a blocking mask. 

In the intervening time intervals between the pulses the detector measures 

the substantially steady-state residual R beam irradiance “baseline” in the 

annular region. A digital oscilloscope receives the output signal of the 

detector amplifier and measures the signal difference between the pulse 

peaks and the intervening baseline. That difference constitutes the essential 

pulse height measurement ΔC for the “C-mode” in which the S beam is 

coupled to the R beam shown in (c) of Fig’s. 2.1c-d. Since irradiance is an 

intrinsic variable, the collective areal increments of irradiance illuminating the 

detector properly constitute the extrinsic variable of power. By proper 

calibration ΔC can then be expressed in power units such as milli-Watts.  

In the absence of the R beam, a corresponding uncoupled U-mode pulse 

height ΔU is similarly measured as depicted in (d) of Fig’s. 2.1c-d. For non-

ideal circumstances, presumptively totally depleted (empty) unrestored S 

beam pulses may still exhibit some small non-zero residual irradiance on the 

detector. That residual irradiance may be measurable as an unrestored 

pulse peak level relative to the presumptively zero baseline level with R 

absent or a non-zero baseline level from a “bias” ancillary beam. In either 

case, the U-mode level differential can be expressed in power units and 

constitutes the essential pulse height measurement ΔU.  
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Figures 2.1c-d. Coupled-mode (c) shows restored S pulse heights on a 
baseline of residual R beam in annular region. Uncoupled-mode (d) 
depicts unrestored S pulse on an ancillary bias beam baseline.   

If there is no significantly measurable value of ΔU, the S beam is “empty” to 

within the limits of the measurement apparatus and concurrently ΔC 

represents some measured value of power (energy flux), Pwr, restored onto 

that presumptively empty pulse. That restoration power Pwr then represents 

a probability (integrated intensity) flux of, at least, Pwr-eq if the pulse is fully 

restored to ordinary. That conclusion is consistent with the LR hypothesis 

that the occupation value for an ordinary beam Ω=Pwr/Pwr-eq=1 where Pwr 

and Pwr-eq are the complementary particle-like (energy quanta) and wave-

like properties of a beam.                    

More commonly, ΔU is a non-zero measurable value implying that the S 

beam pulses exiting Pol are not totally depleted. Concurrently, ΔC represents 

some measured value of power (energy flux), Pwr, of presumptively fully 

restored pulses. That restoration power Pwr then represents the actual 

probability flux (integrated intensity) expressed as Pwr-eq consistent with the 

pulses being fully restored to ordinary. Because the presently considered ΔU 

is a non-zero measurable value, the ratio ΔU/ΔC=ΩSi, where ΩSi is the 

occupation value of the partially depleted S pulses before restoration.  

Importantly, a demonstration of even a partial restoration to ordinary 

provides evidence of an ΩSi<1 in support of LR. Progressive improvements, 

typically in coupling path alignments, provide corresponding progressive 

reductions in the experimentally observed ΩSi that converge to some 

minimum ΩSi. That minimum ΩSi is achieved when the coupling path fully 
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restores the pulses and potentially represents the actual non-zero 

occupation value of the S pulses exiting POL.  

That small but actual non-zero ΩSi can arise from several factors. Notable 

among these factors is the polarization of the linearly polarized SLM source 

beam. A modest but not untypical 100:1 polarization of that source can 

counterintuitively result in a significant departure of the actual ΩSi from zero. 

For example, at 100:1, 1% of the source beam irradiance is transmitted at 

the POL’s orthogonal axis. Concurrently, consistent with LR, ~11% of the 

source beam intensity is also emitted by that orthogonal axis as an empty 

wave. Together these emissions from the POL’s orthogonal axis output 

predict an ΩSi≈1%/11%≈0.09. This ΩSi can be reduced by various means, 

however for the purposes of refining a proof-of-principle demonstration, a 

non-zero ΩSi, as a result of a non-zero ΔU, provides a highly useful reference 

value in the process of optimizing coupling path alignments.  

As a separate matter related to ensuring detector accuracy, a 635 nm MLM 

diode laser is used to provide an ancillary “bias” beam power on the detector 

that is approximately equal to that of the R beam as shown in Fig. 2.1d. A 

two-position beam blocker BB-2 is set in concert with BB-1. When both beam 

blockers are set to C, R is coupled to S and the bias beam path to the 

detector is blocked. Alternatively, when both are set to U, R is uncoupled 

from S and the bias beam is incident on the detector. 

The ancillary beam ensures that detector samplings are acquired over a fully 

linear response range of the detector. A detector that nominally has a highly 

linear response may still exhibit a significant non-linear response at near-

zero power levels. When operating in the uncoupled U-mode (with the R 

beam uncoupled from the detected S beam), an essential pulse height ΔU is 

measured by a digital oscilloscope from the detector amplifier output. ΔU is 

the differential between the peak level of the pulses and the steady-state 

baseline in the intervening time intervals between the pulses.  

If an ancillary bias beam were not provided during this U-mode, there would 

be zero power present on the detector during those intervening time intervals 

and an accurate linear detector response might be in question. Conversely, 

if a steady-state ancillary bias beam power is provided on the detector, the 

baseline power is elevated away from the zero level, and during the presence 

of a pulse that bias power is simply additive to the pulse beam power since 
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the bias beam and the S beam are respectively at substantially non-

interactive wavelengths. With that bias beam present the measurement of 

ΔU is acquired without a problematic zero power level on the detector. 

Similarly, as an additional separate matter, M1-Hp includes a haptic actuator 

to ensure that interference between S and R at the detector does not 

adversely affect the measurement of ΔC. In the absence of a haptic actuator, 

the phase relation between S and R generates interference fringes at the 

plane of the detector. An excess or deficiency of bright fringes relative to dark 

fringes inclusive in the annular beam incident on the detector may result in a 

similar excess or deficiency of measured power in the ΔC measurement. This 

potential source of error is eliminated by the use of the haptic actuator. The 

haptic actuator provides a 1 KHz vibration on that beam director and mirror 

that effectively removes any phase relation of the S beam with the R beam 

on the other leg of the apparatus configuration during the digital oscilloscope 

signal acquisition time. In order to maximize measurement accuracy in this 

proof-of-principle demonstration, the digital oscilloscope signal averages 

over 128 of the 1/40th sec pulse cycles, i.e. 3.2 sec.  

The haptic actuator is purposefully located on the “S” portion of the Fig. 2.1a 

configuration loop rather than the “R” portion because of the potential for 

highly destabilizing baseline excursions in the latter case. Virtually all of the 

highly intense convergent R beam is blocked from the detector by critical 

alignment on a small diameter mask leaving only a low intensity residual 

annular R beam on the detector. Any lateral disturbance of that alignment 

can produce a time-varying intense coronal leakage at an edge of the mask 

of the substantially blocked R beam. 

The bias beam and haptic actuator are included in the Fig’s. 2.1a-b 

configuration in the interests of closing potential “loopholes” that might 

adversely affect the validity of the ΔC measurement. 

2.4.1 Parameters for proof-of-principle experiment       

This subsection more specifically examines representative examples of 

component and beam parameters as well as occupation value estimates 

based on those parameters. These representative parameters for the proof-

of-principle demonstration are shown in Fig. 2.2. 
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Figure 2.2a. Example of coupled-mode beam power values in micro-
Watts and associated probability flux in parentheses for non-ordinary 
beams. Square bracketed value shows S beam power in uncoupled 
mode. 

An SLM DPPS 532 nm laser provides a 10 mW ~100:1 vertically polarized 

source beam. The beam is incident on a 0.2 transmissive attenuator Attn-1 

and the remaining 2000 μW is incident on a 50:50 beam splitter BS-1. The 

1000 μW transmitted by BS-1 is incident on a 0.1 transmissive attenuator 

Attn-2 leaving 100 μW incident on a 1000:1 extinction value linear polarizer 

Pol.  

Consistent with LR, the 100 μW beam incident beam projects 11% of its 

intensity or, equivalently, its probability flux, onto the Pol horizontal axis as 

an empty planar wave, emerging as an empty wave beam with a probability 

flux of 11 μW-eq. 

Because of the 100:1 polarization of the source beam, that 100 μW vertically 

polarized beam incident on Pol more precisely includes a 1 μW horizontally 

polarized component beam. Since the utilized polarization axis output of Pol 

is horizontally oriented, the power (energy flux) of the incident 1 μW 

horizontally polarized component is fully transmitted as a planar wave in Pol, 

emerging at the horizontal axis output. Of secondary consequence, that 1 

μW incident beam is no longer ordinary upon exiting Pol because its  

probability flux has fallen from 1 to 0.89 μW-eq, leaving it slightly enriched 

with an occupation value Ω=1.12. That 0.89 μW-eq probability flux, which 
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randomly has either an in-phase or an out-of-phase relation with the 11 μW-

eq probability flux, is neglected. 

An additional output contribution arises from the finite Pol extinction ratio 

which is >2000:1. As a result a horizontally polarized relatively insignificant 

<0.05 μW can be neglected relative to the 1 μW on the Pol’s horizontal 

output.  

Then the Pol’s horizontal output beam resolves to Pwr=1μW and Pwr-

eq=11μW-eq which constitutes a moderately depleted pulsed S output beam 

with an initial occupation value ΩSi= Pwr/Pwr-eq=1μW/11μW-eq=0.09. That 

moderately depleted pulsed S beam is incident on the mirror of a beam 

director equipped with a haptic actuator M1-H.  

The mirror on M1-H directs the pulsed S beam to a 50:50 beam splitter BS-

2. The coupling path of the pulsed S beam and the R restoration beam 

begins at BS-2. That R beam is derived from the vertically polarized SLM 

1000 μW beam fraction reflected off of the first beam splitter BS-1. The R 

beam encounters a first order 532 nm half wave plate HWP that rotates the 

beam’s polarization state by 90°. The now horizontally polarized 1000 μW R 

beam is incident on BS-2 coincident with the pulsed S beam spot. The 500 

μW fraction of the R beam transmitted by BS-2 is utilized as the R beam on 

the coupling path. Since the R beam on that path is ordinary, the R beam’s 

probability flux is 500 μW-eq.  

Similarly, for the pulsed S beam incident on BS-2, the reflected fraction is 

utilized as the S beam on the coupling path and consists of pulses with 0.5 

μW energy flux (power) and 5.5 μW-eq probability flux. (Time averaged, 

these values would appear to be half again as large because of the 50% duty 

cycle of the pulses produced by the chopper wheel.) 

Adjustment of the beam director on which BS-2 is mounted provides for 

concentric collinearity of the S and R beams along the coupling path. In the 

proximal region of the coupling path where the two beams have comparable 

Gaussian diameters, the probability flux of the R beam, 500 μW-eq, exceeds 

that of the S beam pulses, 5.5 μW-eq, by approximately two orders of 

magnitude. As a result, the two coupled beams in this C-mode configuration 

are expected to equilibrate to a common final occupation value Ωf=ΩRf=ΩSf 

over the course of propagating in the proximal region of the coupling path. 
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That Ωf is approximately ordinary since the R beam probability flux is much 

greater than that of the S beam. 

As the two beams propagate together into the distal region of the coupling 

path, the convergent R beam power is progressively concentrated toward 

the center of the S beam. At the terminus of the coupling path, the 500 μW 

R beam power is almost entirely blocked by the mask Mk whereas the 

relative residual R beam power incident as an annular beam on the detector 

is about two orders of magnitude smaller at ~5 μW. This measurement is 

acquired by blocking the S beam. Concurrently, with R blocked in U-mode, 

a still substantial fraction of the S pulse power is incident as an annular beam 

at ~2 μW which, because of the 50% duty cycle of the pulses, averages as 

~1 μW. With both beams present on the coupling path, i.e. C-mode, the S 

pulse power measured relative to the R beam baseline rises to levels as high 

as ~20 μW. (The bracketed value [0.2] denotes the S beam power in μW in 

the uncoupled mode.) 

A first order estimate of the initial S beam pulse occupation value ΩSi is 

readily computed below from the typical beam parameters given here, 

assuming that the residual R beam is a steady state baseline power and that 

the S beam pulses are fully restored. A more precise estimate of ΩSi in the 

absence of those simplifying assumptions, is also be computed to assess 

the magnitude of the error in the first order estimate. 

The U-mode pulse height of ~2 μW=ΔU constitutes the energy flux of the 

unrestored annular beam S pulses that are incident on the detector. The C-

mode pulse height of ~20 μW= ΔC. Under the assumption that those pulses 

are fully restored, ΩSf=1=ΔC/Pwr-eq=20 μW/Pwr-eq. The power-equivalent 

probability flux of the pulses is then Pwr-eq=ΔC=20 μW, recalling that for an 

ordinary beam the imposed normalization effectively results in the 

dimensionless equality of the beam’s particle-like (energy) parameter and its 

complementary wave-like parameter. In the context of normalized, 

dimensionless irradiance I and intensity W for ordinary beams, I=W=1. This 

equality can be applied to the presently considered fully restored pulses 

expressed in Pwr and Pwr-eq units.  

Importantly, since the wave-like parameter of a beam does not change in the 

process of equilibration, the Pwr-eq=ΔC=20 μW=20 μW-eq determined from 

the restored pulses is equally applicable to the initial, unrestored pulses. 
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From this example it can be seen that in general for the first order estimate, 

ΩSi reduces to the simple ratio of ΔU and ΔC, 

ΩSi=ΔU/ΔC. 

For the presently considered pulse height measurements where ΔU~2 μW 

and ΔC~20 μW-eq, the first order estimate of the occupation value of the S 

beam pulses emitted by Pol is ΩSi~0.1. This estimate characterizes the Pol 

output S pulses as 90% depleted. The principal factor that causes these 

pulses to be 90% depleted rather than totally depleted, i.e. empty, can be 

traced to the 100:1 polarization ratio of the SLM source beam.  

The accuracy of this first order estimate can be further assessed by removing 

approximations introduced in that estimate. These approximations 

specifically relate to the assumption that the pulses are fully restored in C-

mode and the assumption that the R beam power lateral to the S pulses 

correctly represents in the lower level of the ΔC measurement.  

On the coupling path the R beam probability flux is ~500 μW-eq while the S 

beam pulses are ~5.5 μW-eq. Therefore Ωf≈0.99 rather than 1 and the upper 

level of ΔC is erroneously ~1% lower than it would have been for total 

restoration. That error applied to the present example of a ~20 μW pulse 

height means that the actual upper level of the ΔC measurement should be 

increased by ~0.2 μW. 

An additional error is related to the depletion of the fraction of the R beam 

incident on the detector. In the equilibration process the R beam is depleted 

by the S beam pulse. The respective probability fluxes, 500 μW-eq and 5.5 

μW-eq on the coupling path, differ by approximately two orders of magnitude. 

Consequently, if the initial S beam pulses are substantially depleted, the total 

power lost by the R beam in the equilibration process is ~5.5 μW. However, 

because of the R beam’s convergence onto the mask, only 5 μW of that 

beam is incident on the detector giving a faction ~5 μW/500 μW=0.01 of the 

R beam’s probability flux incident on the detector. Therefore the depletion of 

the R beam incident on the detector is ~0.055 μW during S pulses. 

Accordingly, the actual power of the R beam during the S pulses is 0.055 μW 

lower than the measured power level of 5 μW for the ordinary (undepleted) 

R beam during the times between the S pulses.  
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Figure 2.3. Example of a pulse height measurement in coupled mode 
showing R beam related errors. Numerical values are in microWatts. 

For the present example of configuration parameters the combined two 

errors represent an ~ -1% underestimate of the ΔC measurement and, 

correspondingly, an ~ +1% overestimate of the first order estimate 

ΩSi=ΔU/ΔC. These relatively predictable errors associated with the presence 

of R beam are shown in the Fig. 2.3 diagram of a C-mode pulse. From an 

experimental perspective, the two measurements, ΔU and ΔC, provide an 

adequately accurate value of ΩSi using only the simple expression ΩSi=ΔU/ΔC.  

As a very important practical matter with regard to potential measurement 

error, suboptimal alignment of the beams on the coupling path can readily 

result in partial restoration and an apparent ΔC-app that is a large undervalue 

of the full ΔC peak height that would otherwise be expected for substantially 

complete restoration. Consequently, experimental trials acquired with 

suboptimal alignments typically yield a very wide range of apparent ΩSi-app 

values that can easily far exceed the above ~ +1% overestimate of ΩSi 

associated with the presence of the R beam in C-mode. As alignments are 

improved, those apparent ΔC-app increase and ΩSi-app values converge down 

to the true physical ΩSi value corresponding to substantially complete 

restoration of the S pulses. 

The functional dependence of incomplete restoration on apparent 

measurement values of ΔC-app giving ΩSi-app=ΔU/ΔC-app can be instructively 

examined by considering several examples. In this exercise an actual initial 
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value ΩSi=0.1 is assumed. That value is conveniently represented by energy 

E=0.1 and probability P=1. In terms of ΩSi=ΔU/ΔC, the unit-less energy 

measurement values ΔU=0.1 and ΔC=1 can be assigned for the actual initial 

ΩSi where the energy measurement ΔC=P=1 with complete restoration. 

However, when restoration is incomplete ΔC-app <1 principally as a result of 

suboptimal alignment. 

If the restoration toward ordinary is only 15%, i.e. ΔC-app=0.15, the apparent 

measured initial occupation value is ΩSi-app=0.67 since ΔU=0.1 is unchanged. 

In this example, coupling has added only an additional E of 0.05 to the 0.10 

already present on the beam. Then the corresponding calculated partially 

restored final occupation value ΩSf-pr=E/P=0.15/1=0.15. Similarly, for 50% 

restoration, the measured initial occupation value ΩSi-app=0.2 and the 

corresponding calculated partially restored final occupation value                  

ΩSf-pr=E/P=0.5/1=0.5. For 100% restoration ΩSi-app= ΩSi=0.1 since ΩSf-pr =1. 

From these examples the utility of the apparent measured initial occupation 

values ΩSi-app=ΔU/ΔC can be appreciated. As incomplete restoration is 

progressively improved toward complete restoration, the apparent initial 

occupation value converges down to some minimum that represents the 

actual initial occupation value, ΩSi-app→ΩSi .  

2.4.2 Results and Discussion  

Experimental trials have produced a wide range of ΩSi-app<1 values. Proper 

alignment of the beams appears to be the most critical factor in achieving 

maximum pulse restoration of the presumptively empty wave beam. As 

alignment is improved, trial values of ΩSi-app decrease from values only 

modestly in the range of <1 to the range of ~0.1. Those trials yielding ~0.1 

are postulated to represent the actual ΩSi value that is expected from the 

100:1 polarization of the SLM laser. 

Importantly however, even for those trials in which pulse restoration is 

incomplete, any statistically valid experimental trial yielding an ΩSi-app<1 is 

potentially evidence in support of the reality of empty waves and evidence in 

conflict with the probabilistic interpretation of quantum mechanics, PI.   

2.4.3 Comments on “equilibration” and “restoration”. 

“Equilibration” as applied here is the process in which two separate beams, 

identified as S and R, are transiently coupled and re-separated. The purpose 
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of this process is to converge differing occupation values of those respective 

beams, ΩS and ΩR, to a common value Ω. In this process energy quanta, the 

particle-like aspect of the beams, are transferred from the beam with the 

higher occupation value to the beam with the lower occupation value. 

Concurrently, the wave-like aspects of the beams are unchanged in this 

process.  

A particularly useful application of the equilibration process relates to 

detecting empty or nearly empty waves Ω≈0 at a receiver. Conventional 

detectability of such waves is achieved by equilibrating those empty waves 

to an ordinary or near ordinary Ω≈1 state. This application represents a 

special case of equilibration defined here as “restoration” in which any 

partially or totally depleted (empty) beam is literally restored to an ordinary 

state by sufficient acquisition of energy quanta during the coupling. That 

restoration process is most readily achieved by coupling a depleted or empty 

beam S with an ordinary beam R, comparable in Gaussian diameter, but with 

a much higher wave intensity. Because of the very large disparity in the wave 

intensities of the two beams the final common Ω is only fractionally less than 

unity. 

 

2.5 ANALOG TO CAPACITORS 

The process in which two beams equilibrate to a common Ω as a result of 

transient coupling is analogous to the process in which two capacitors 

equilibrate to a common voltage as a result of a transitory parallel coupling 

of their electrodes. In the fullest sense of this analogy it is most appropriate 

to consider extrinsic variables for the beams such as probability P, energy E 

and occupation value Ω in respective relation to the variables of capacitance 

C, charge Q, and voltage V for the capacitors. The variables for the two 

beams as well as for the two capacitors are respectively distinguished by the 

subscripts S and R. The additional subscripts i and f further distinguish the 

variables where i indicates the initial value of a variable before the transient 

process occurs and f indicates the final value of a variable after the transient 

process has been completed.  

The fundamental relationship between the beam variables is given by the 

simple equation Ω=E/P while the analogous fundamental relationship 
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between the capacitor variables is given by V=Q/C. For the S beam and the 

R beam the initial fundamental relationships are ΩSi=ESi/PS  and ΩRi=ERi/PR, 

respectively. Correspondingly, the final relationships are ΩSf=ESf/PS  and 

ΩRf=ERf/PR, respectively. For the capacitors, the directly analogous 

equations are VSi=QSi/CS, VRi=QRi/CR, VSf=QSf/CS and VRf=QRf/CR. 

For the case of the capacitors, the capacitances CS and CR are each 

invariants that do not change as a result of transient coupling with each other. 

This invariance is reflected in the lack of i and f subscripts applied in the 

above equations for those quantities. In that context the capacitances are 

more properly characterized as “parameters” rather than as “variables”. 

Conversely, the quantity of charge Q resident on a capacitor can change 

when that capacitor is coupled to another capacitor and that Q value is 

appropriately designated as a variable. 

This distinction also analogously applies to the beams. The probability P of 

a beam represents integration of the intrinsic wave intensity (a probability 

flux density) variable W over the cross section of a propagating beam for 

some selected time increment Δτ. That integration defines the total (extrinsic) 

probability P of that selected beam segment length. Similarly, the inclusive 

energy quanta residing on the wave structure of that beam segment is 

appropriately designated as the total (extrinsic) energy E.  

Beam quantities such as the beam intensity W and the irradiance I can also 

be compared to the capacitor analog since those beam quantities are related 

to each other by Ω=I/W. However, W and I are intrinsic beam quantities and 

the analog to capacitors must be applied with care. For a Gaussian beam, 

specifications of W and I are generally understood to mean the respective 

maximum values of those quantities which are located at the center of the 

beam’s Gaussian cross section. If a given beam is divergent, both of those 

quantities proportionately decrease along the beam path but their ratio I/W 

remains constant. Consequently, at a more distant point along the beam 

path, Ω=I/W is unchanged. 

However, if two beams with dissimilar divergences are being considered in 

a mutual equilibration process, treatment of that equilibration with intrinsic 

variables at one point along the beam path of the two coupled beams where 

their Gaussian diameters are similar is not directly relatable to that treatment 

at a distant point along the beam path where the Gaussian diameters are 
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dissimilar. That difficulty is avoided when using extrinsic quantities such as 

P and E which relate to total inclusive probability and energy within a beam 

segment of some selected length and not to a maximum values of intrinsic 

quantities that each diminish along a diverging beam.                               

Then applying the extrinsic E and P to ordinary beams, for which the ordinary 

occupation value is Ωo=E/P=1, E=P in dimensionless units, it can be 

appreciated that the extrinsic parameter of P provides a fixed “capacity” of 

the beam to hold some energy quantity E under ordinary conditions. 

Analogously, charging any particular capacitor to some standard reference 

voltage Vo fixes the value of C based upon the measurable charge Q 

accumulated on the capacitor since Q=C for that standard voltage Vo.  

In the context of the present Fig. 8a proof-of-principle demonstration 

0<ΩSi<<ΩRi=Ωo=1 and ESi<<PS<<PR=ERi.  The corresponding relative 

proportioned quantities for the capacitor analog are 0<VSi<<VRi=Vo=1 and 

QSi<<CS<<CR=QRi. For a particular relevant example of the beam-capacitor 

analog, a similar set of unit-less values is selected: VSi=0.1, QSi=0.1, CS=1, 

CR=100 and QRi=100.  

If the CS and CR capacitors with their respective initial charges are 

equilibrated by transient coupling, the total charge is QT=100.1 and the total 

capacitance of the coupled capacitors is CT=101. That results in a common 

voltage of VT=QT/CT=0.9911 on the coupled CS and CR during that transient 

coupling. If the capacitors are then decoupled, the final voltages on CS and 

CR remain at that common voltage, 

0.9911=VSf=QSf/CS=VRf=QRf/CR  

This equation shows that the smaller CS capacitor, with an initial VSi=0.1, has 

equilibrated almost to the level of the standard reference voltage of Vo=1 

while the larger CR capacitor has only fractionally diminished in voltage from 

its initial Vo=VRi=1. The respective final charges are also from this equation, 

QSf=0.9911 and QRf=99.11. 

As a further analogy to the beam restoration process in which only a fraction 

of the S beam is measured at the detector, the capacitor CS=1 itself can be 

treated as two smaller parallel-connected capacitors, e.g. CS1=0.3 and 

CS2=0.7. Any voltage on CS is also on CS1 and CS2. After the transient 

coupling is completed, i.e. CS and CR have been disconnected, the voltage 
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of 0.9911 on CS can be indirectly measured by then disconnecting CS into 

separated CS1 and CS2, and measuring the voltage on either, e.g. CS1. That 

voltage measurement on CS1 is the same 0.9911 that is present on CS and 

completes the capacitor analog to the coupled C-mode beam restoration 

measurement. 

The corresponding uncoupled U-mode capacitor analog measurement 

follows immediately from the initial CS parameters VSi=0.1, QSi=0.1, and CS=1 

since CR is not coupled to CS. As a result, the initial CS variables VSi=0.1 and 

QSi=0.1 are also the final variables VSf=0.1 and QSf=0.1. Finally, since the 

CS1 voltage is the same as the CS voltage, that CS1 voltage is also VS1f=0.1, 

completing the capacitor analog to the coupled U-mode beam restoration 

measurement. 

The above exercise in capacitor equilibration is immediately translatable to 

beam equilibration by conversion of V, C, and Q to Ω, P, and E respectively. 

Although the two processes are physically quite distinct, the mathematical 

computations are essentially identical and the exercise is very instructive in 

demonstrating that a beam’s real wave structure has a “capacity” property 

for storing energy that is analogous to a capacitor’s property for storing 

charge.    

2.7 MODES, WAVE FUNCTIONS AND THEIR 

INTERACTIONS WITH POLARIZERS 

A mode is an electromagnetic radiation coherence wave that may be 

occupied by one or more energy quanta in which case it would be commonly 

characterized as a boson state comprised of one or more photons. A mode 

may have some consequential macroscopic length along its propagation axis 

such as any of the multiple modes that are simultaneously present in a 

coherence length of a multi longitudinal mode MLM laser beam. Each mode 

in a MLM beam is in general occupied by a large multitude of energy quanta. 

The quanta on any given mode are incrementally different in energy from 

those of the other modes and the arc bisector orientation of any given mode 

for an MLM beam, linearly polarized relative to some axis, is that of a random 

member of a polarization ensemble about that axis. Lasers can also be 

constructed to emit only a single mode at any given time. The modes of such 

single longitudinal mode SLM lasers are typically much longer than those of 
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MLM lasers. However, in common with MLM lasers, the arc bisector 

orientation of any single mode for an SLM beam linearly polarized relative to 

some axis is that of a random member of a polarization ensemble about that 

axis.  

Significantly, a source emitting a sequence of linearly polarized discrete 

photons is functionally analogous to the beam of a linearly polarized SLM 

laser with respect to the commonality that both sequentially emit single 

modes and the arc bisectors of those modes have an orientation of a random 

member of a polarization ensemble referenced to the associated linear 

polarization axis. This commonality is emphasized at this point because 

frequent utilization of linearly polarized SLM beams is made here but typically 

linearly polarized discrete photons are similarly functional albeit with greatly 

reduced wave intensity and detectable energy quanta. From a 

representational standpoint that commonality is manifested in a wave 

function that is generally applicable to linearly polarized SLM beams as well 

as to linearly polarized discrete photons.     

In the context of the present analysis, in which interactions with devices such 

as polarizers are examined, the convention is followed here of using a 

compact form of the wave function. However, the notation used in this LR 

representation of wave functions is deliberately modified from that of PI in 

the interests of clearly distinguishing objectively real quantities from those of 

probabilistic quantities.  

The analysis begins with an electromagnetic wave mode propagating in free 

space or in a non-polarized medium. That mode is properly represented by 

a “pie-vector” amplitude Φ that is orthogonal to the propagation axis. At any 

point along the mode’s propagation axis the mode is represented in the 

transverse plane by an infinite set of equal amplitude radial vectors uniformly 

distributed over a π/2 arc resulting in a 3-dimensional wave structure of the 

mode modulated along the propagation axis by the longitudinal wave 

function ξ. When a pie vector amplitude of the mode is incident on a polarized 

medium a condensation process occurs that projects the angularly 

distributed radial vectors onto the polarization axis (or axes) of the polarized 

medium. These projections result in the 3-dimensional mode condensing to 

a 2-dimensional mode consisting of a planar wave aligned with the medium’s 

polarization axis in the transverse plane and modulated along the 



25 

QuWT 

 

propagation axis by the longitudinal wave function ξ. Accordingly, the pie-

vector Φ transitions to a simple vector representation Φδ that is aligned to 

the medium’s polarization axis upon entering the medium, orthogonal to the 

propagation axis and modulated along the propagation axis by the 

longitudinal wave function ξ. The δ subscript denotes that Φδ is a planar wave 

condensed from a pie-vector Φ in a process analogous to a Dirac-delta 

function. In treating transitions between pie-vectors to vectors it is 

mathematically more expedient to utilize a vector form Φ that serves as 

equivalency vector substitute for the pie vector Φ. The requisite properties 

of the equivalency vector Φ can readily be determined by considering a 

Φ→Φδ transition and imposing conservation of probability.  

The pie vector form wave function representing a free space mode is  

Φ(θ,z,t)=ξ(z,t) m r(θ).  

The pie vector r(θ) is a unit modulus, |r(θ)|=1, transverse representation of 

Φ(θ) comprised of an infinite set of equal amplitude unit magnitude radial 

vectors uniformly distributed over a π/2 arc with an arc bisector at θ. The 

longitudinal wave function is assigned a unit modulus, |ξ|=1, so that the 

magnitude of Φ(θ) is subsumed in some scalar coefficient m. The orientation 

θ denotes the objectively real bisector of the Φ(θ) arc span.   

The particular example of θ=0° is first examined before proceeding to a 

general case of θ. When an objectively real Φ(0°) is normally incident on a 

polarizer such as calcite that has a polarization axis at 0°, the cosine 

projections of the r(0°) unit magnitude radial vectors along the 0° axis 

integrated over ±π/4 introduces a factor of √2 which, divided by π/2, gives 

an average projection of almost exactly 0.9. More significantly, however, as 

the projective process proceeds, the resultant entity arising from the vector 

sum of the radial vector cosine projections is a very narrow, large amplitude 

peak trivially centered at 0° by symmetry in a physical process 

mathematically analogous to the Dirac delta function.  

Physically in that process of Φ(0°) → Φδ(0°), probability is conserved 

consistent with the Dirac delta function applied to the squared modulus of a 

spatially extended amplitude condensing into a vanishingly narrow peak. The 

wave function of Φδ(0°) is represented by   

Φδ(0°)=ξ M rδ(0°) 
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where δ subscripts explicitly denote the vector quantities Φδ  and rδ as 

physically planar condensations in the transverse plane. M is the scalar 

magnitude of the Φδ vector amplitude.   

In analyzing transitions of amplitudes into and out of polarizers it is 

mathematically more expeditious if all amplitudes can be expressed in vector 

form. To this end, the “equivalency vector” Φ is introduced here in 

mathematical replacement of the pie vector Φ which more accurately 

physically represents modes in free space and in non-polarized mediums. 

Nevertheless, the equivalency vector Φ still retains the properties necessary 

to represent mode interactions with polarizers while properly conserving 

probability in those interactions.  

In contrast to the pie vector,    

Φ(0°)=ξ m r(0°)  

where its arc bisector unit vector is oriented at 0° in the transverse plane 

the equivalency vector    

Φ(0°)=ξ M′ r(0°) 

is represented in the transverse plane by a unit radial vector r oriented at 0° 

and that vector is scaled by a magnitude M′. 

In these respects the equivalency vector amplitude is structurally similar to 

the mode vector amplitude within a polarizer,   

Φδ(0°)=ξ M rδ(0°) 

where 0° is necessarily the orientation of the polarization axis of the polarizer 

in which Φδ(0°) is propagating. For the equivalency vector Φ(0°), that δ 

subscript is omitted as a reminder that the equivalency vector is not 

physically a planar condensate but is instead a mathematical substitute for 

the polarizer-incident pie vector Φ(0°).  

The mathematical functionality of that substitution is made possible by the 

probability conservation in the Φ(0°) → Φδ(0°) transition which allows, in a 

time reversal process, the imposition of the same magnitude onto the 

equivalency wave function Φ(0°) as that on the planar wave function Φδ(0°) 
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propagating within the polarizer, i.e. M′=M. Mathematically this imposes the 

probability of the pie vector Φ(0°) onto the equivalency vector Φ(0°).   

The above special case of θ=0° for modes incident on a polarizer can readily 

be extended to the general case of some objectively real θ for the pie vector 

arc bisector orientation. For a pie vector with an arc bisector at θ, the vector 

sum of the radial vectors is by symmetry a resultant vector oriented at θ.  

This allows a decomposition of an equivalency vector amplitude            

Φ(θ)=Φ(0°) cos θ + Φ(90°) sin θ 

        =ξ M cos θ r(0°) + ξ M sin θ r(90°). 

We then consider the above decomposed vector amplitude incident on a 

two channel polarizer such as calcite where the “vertical” polarization axis 

is at 0° and the “horizontal” polarization axis is at 90°. Specifically, the 

equivalency vectors Φ(0°) cos θ and Φ(90°) sin θ are incident respectively 

on the polarizer’s 0° and 90° axes. As a result, the δ-form amplitudes  

Φδ(0°)=ξ M cos θ rδ(0°)  

and  

Φδ(90°)=ξ M sin θ rδ(90°) 

respectively propagate on the 0° and 90° polarization channels. The 

squared moduli of these two δ-form amplitudes confirms that probability is 

conserved in this representation and demonstrates the utility of employing 

the equivalency vector in place of the pie vector for the general case of a θ 

arc bisector.  

Summary of Notation:  

Φ(θ) and  r(θ) are pie vectors that geometrically and mathematically correspond to 

modes in free space. 

Φ(θ) and r(θ) are “equivalency” vectors that generally can be used as simplified 

mathematical vector substitutes for pie vector representations of modes in free space.     

Φδ(θ) and rδ(θ) are vector quantities that geometrically and mathematically correspond 

to δ-form modes in polarizers. 

The outcome of energy quanta on modes incident on polarizers must also 

be addressed in the context of the wave functions. 
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The transfer of energy quanta of the mode onto a channel of a polarizer is 

deterministically dependent upon the intersection of the mode’s incident arc 

intersecting that channel. That condition is determined from the equivalency 

vector orientation θ. If  

−45°<θ<+45°  

the arc intersects the 0° vertical polarization axis and the energy quanta that 

occupy the mode are confined to the vertical polarization channel of the 

polarizer as the radial vectors of the mode projectively condense along the 

vertical polarization axis. Conversely if  

+45°<θ<+135°  

the energy quanta are confined to the polarizer’s horizontal polarization 

channel.  

The presence of energy quanta on a mode amplitude is indicated by a “+” 

subscript. For example, the equivalency vector amplitude 

Φ(θ)+=ξ M rδ(θ)+= ξ r(θ)+ 

is occupied and has a unit modulus since M=1. If −45°<θ<+45° and Φ(θ)+ is 

incident on a calcite polarizer, the projection of that amplitude onto the 

vertical polarization axis results in a occupied vector amplitude 

Φδ(0°)+=ξ cos θ rδ(0°)+  

propagating on the vertical polarization channel with a magnitude cos θ. 

Then, deterministically,   

Φδ(90°)=ξ sin θ rδ(90°) 

is the vector amplitude propagating on the horizontal polarization channel 

with a magnitude |sin θ|. Since −45°<θ<+45°, the associated arc of the 

incident mode does not intersect the horizontal axis and the vector amplitude 

propagating on the horizontal polarization channel Φδ(90°) is an “empty” 

wave mode as indicated by the absence of a “+” subscript. 

There are numerous occasions encountered in the analyses below in which 

an incident mode is polarized about some specified polarization axis where 

that axis has an orientation θ as distinct from specifying that the objectively 

real incident mode itself has some specified orientation. That distinction is 
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addressed here by adopting the convention that θα denotes the orientation 

of a mode that has the orientation of a random member α of a polarization 

ensemble centered about θ. The subscript is given by a lower case Greek 

letter other than δ to avoid confusion with δ-form modes.  

For example, the notation 0°α specifies that the amplitude is transversely 

represented by the orientation θ (bisector angle) of a random member α of 

the 0°-polarization ensemble. θ is in the range from -45° to +45° with a 

frequency distribution determined by the ensemble’s cosine squared 

curvilinear envelope. This convention can be instructively visualized using 

the finite 16-member ensemble depicted in FIG. 2.4 where α is some random 

value from 1→16 and θ is the bisector angle of that α member.  

An expression for the bisector orientation of a given α member can readily 

be computed. For the finite 16-member vertical polarization-ensemble in 

radians 

0α=cos-1[(α-1)/15]1/2-π/4 

The presence of an energy quantum on a discrete “photon” wave packet or 

of (a large number of) energy quanta on a mode is denoted by an appended 

subscript “+”.  

It is important to emphasize that any successive input mode, similarly 

represented by an amplitude Φ1(0°α), has a realized random member α 

orientation that is uncorrelated to the realized random member α orientation 

of any of the temporally preceding modes. This property is noted here 

because in the course of this analysis, there arise circumstances in which 

two or more simultaneously present amplitudes having random orientations 

interact with each other. For these simultaneously present amplitudes, the 

convention applied in this disclosure is that the amplitudes have mutually 

non-correlated random orientations when their Greek letter indices are 

respectively different and have mutually correlated random orientations 

when those indices are respectively the same. 

If incident modes are “vertically” polarized, in LR that implies that the 

orientation θ of the mode is statistically that of a random member of a vertical 

polarization ensemble as depicted in Fig. 2.4 using a finite-member 

ensemble for instructional purposes.  
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If the source directs these linearly polarized modes at a two-channel 

polarizer where the polarization axis of the ensemble is in alignment with one 

of the polarization axes of the polarizer, e.g. its vertical axis, then an 

individual source mode has an orientation 0°α where α is some random 

number 1 to 16. The present axial alignment has important consequences. 

From Fig. 2.4, the arcs of all of the ensemble member modes intersect the 

polarizer’s vertical polarization axis. As a result for any particular mode of 

those 16 the energy quanta on the mode transitions onto the vertical channel 

of the polarizer along with the cosine projection of the incident mode 

amplitude. That incident amplitude from the source is  

Φ(0°α)+=ξ r(0°α)+  

which is normalized to a unit modulus since the magnitude M=1. The 

amplitude in the polarizer’s vertical channel is  

Φδ(0°)+=ξ cos (0°α)  rδ(0°)+  

 

Fig. 2.4. A graphical representation of a 0°-polarized ensemble of modes, 

showing here for instructional purposes a finite 16-member ensemble.  Each 

member (row) represents an ordinary mode with a transverse arc span of 

90°. The arc bisectors of each member, denoted by arc-centered dots, are 

in a statistical cosine squared distribution about 0°. The notation 0°α specifies 

a mode that has the bisector orientation of a random member α of a 0°-

polarized ensemble. For the illustrated ensemble, the members are 

designated by α=1→16.        

 



31 

QuWT 

 

that retains the energy quanta that had resided on the incident Φ(0°α)+ but 

has a reduced wave amplitude as a result of the cosine projection of the α 

mode onto the polarizer’s vertical axis. Concurrently the amplitude on the 

polarizer’s horizontal channel 

Φδ(90°)=ξ sin (0°α)  rδ(90°) 

has none of the energy quanta that had resided on the incident Φ(0°α)+. That 

empty wave amplitude has a magnitude |sin (0°α)| as a result of the sine 

projection of the α mode onto the polarizer’s horizontal axis. 

 

 

 

2.8 QUANTUM LOOP CALCULATIONS 

Quantum loops present quintessential examples demonstrating the 

phenomenon of non-local superposition from the perspective of “the 

Probabilistic Interpretation” of the underlying quantum mechanical 

formalism, PI. That phenomenon is often cited by PI as refutation of local 

realism.  

The electromagnetic wave functions for two different loops are analyzed here 

from the perspective of LR. These loops are a pair of contiguous oppositely 

oriented calcite crystals as illustrated in Fig. 2.5 and a polarizing beam 

splitter Mach-Zehnder Loop, PBS M-Z Loop, as illustrated in Fig. 2.6a. From 

the perspective of the Probabilistic Interpretation of quantum mechanics, PI, 

the quantum state of a mode to either loop input is exactly duplicated at the 

loop output in a process then identified as “unitary.”  

 

2.8.1 Mode transit of a calcite loop  

The loop analysis begins with the Fig. 2.5 calcite loop, a pair of contiguous, 

oppositely oriented calcite polarizers. In this and in subsequent analyses the 

amplitudes are subscripted with the number of the path segment on which 

they reside since different path segments may be associated with wave 

function state transitions. 
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Fig. 2.5 Diagram of a calcite loop.  

  

The (unit modulus) amplitude incident on path 1 is  

Φ1(θ)+=ξ r(θ)+  

where −45°<θ<+45° without loss of generality since analysis with the 

orthogonal condition is straightforward. 

The orientation θ of Φ1(θ) may be some random value in a uniform 

distribution from −45° to +45°. Alternatively, Φ1(θ) may be identified as 

derived from a 0°-linearly polarized source. In that case θ is still in the range 

from −45° to +45° but is then derived from a statistical cosine squared 

distribution and the incident amplitude’s orientation could be more precisely 

characterized as some 0°μ rather than θ. However, in the following analyses 

below the original distribution associated with the orientation θ of the incident 

Φ1 is not generally of consequence and it is more appropriate to simply 

identify the orientation as some objectively real θ within a range such as −45° 

to +45°.     

Continuing onto path 2, the amplitude 

Φδ2(0°)+=ξ cos θ rδ(0°)+  

is a δ-form planar wave mode because it is propagating inside a polarized 

media. Φδ2 retains the energy quanta that had been on Φ1(θ)+ because the 
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transverse arc for that θ bisector orientation intersected the 0° polarization 

axis of calcite 10. 

For path 6 the amplitude 

Φδ6(0°)+=Φδ2(0°)+ 

Resulting in   

Φδ6(0°)+= ξ cos θ rδ(0°)+ 

since calcites 10 and 11 are contiguous and there is no amplitude transition 

in the passage from the vertical 0° polarization channel on calcite 10 to that 

on calcite 11.  

The path 3 amplitude  

Φδ3(90°)=ξ sin θ rδ(90°) 

is the complementary horizontal axis projection of the incident amplitude. Φδ3 

is an empty wave mode because of the orientation constraint −45°<θ<+45° 

on θ. In analogy to the Φδ2(0°)+, Φδ6(0°)+ equivalence the amplitude on path 

7 is 

Φδ7(90°)=ξ sin θ rδ(90°). 

With in-phase conditions present for the two orthogonal amplitudes 

converging to the output face of calcite 11, the vector sum of  

Φδ6(0°)++Φδ7(90°)=ξ [cos θ rδ(0°)++ sin θ rδ(90°)] 

                             =ξ r(θ)+  

                                            =Φ8(θ)+ 

                                            =Φ1(θ)+.                               . 

This conjuncture at the calcite 11 exit face results in a loop output mode, 

second line above, identical to the input mode consistent with the unitary 

property of the calcite loop required by the underlying quantum formalism. 

However, this LR representation does not impose the non-local 

superposition necessitated when the loop transit is represented by PI. 
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Fig. 2.6. A polarizing beam splitter Mach-Zehnder, PBS M-Z loop.  

2.8.2 Mode transit of a PBS M-Z loop 

Fig. 2.6a illustrates a polarizing beam splitter Mach-Zehnder loop. Consistent 

with the underlying quantum formalism, transit of this loop is unitary as is 

transit of a calcite loop. The LR analysis of mode transit of the PBS M-Z loop 

is more involved than that of the calcite loop but is nevertheless 

straightforward. In common with the LR transit analysis of the calcite loop, 

the LR transit analysis of the PBS M-Z loop does not impose the non-local 

superposition necessitated when the loop transit is represented by PI. From 

an LR perspective, the PBS M-Z loop configuration is of particular interest 

because of the opportunities presented by the spatial separation of the two 

constituent polarizers.   

 

In the LR analysis of the PBS M-Z loop, the mode’s arc bisector orientation 

θ is constrained to -45°<θ<+45° on the incident mode 

Φ1(θ)+=ξ r(θ)+. 
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Fig. 2.6b. A diagrammatic representation of an incident non-planar mode on 

path 1 projectively condensing in the PBS dielectric layer 25A to a vertically 

oriented delta-form planar wave on path 2 and to a horizontally oriented 

delta-form planar wave on path 3. Those planar waves emerge from 25A to 

form non-planar modes that that have the orientations of random members 

of vertical and horizontal polarization ensembles, respectively.   

The delta-form projections of Φ1(θ)+ inside the PBS 25 dielectric layers, as 

shown in 25A of Fig. 2.6b are  

Φδ2(0°)+=ξ cos(θ) rδ(0°)+  

and 

Φδ3(90°)=ξ sin(θ) rδ(90°). 

In a statistical emission process these amplitudes respectively produce  

 Φ4(0°α)+=ξ cos(θ) r(0°α)+ 

and 

Φ5(0°α +90°)= Φ5(90°α) 

                    =ξ sin(θ) r(90°α). 

This statistical emission process occurs at the output of a polarizer when 

an exit wave is unaccompanied by an orthogonal exit wave. 
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Fig. 2.6c. Diagrammatic representation of waves on paths 4 and 5 entering 

the dielectric layer 26A of PBS 26 as interacting planar delta-form waves 

that exit 26A as non-planar waves on paths 10 and 11. Notably, the 

orientations of those non-planar waves are deterministically set by the 

conjunction of the orthogonal planar waves from which they are formed.       

 

After reflections at mirrors 30 and 31 the respective projections of Φ4(0°α)+ 

and Φ5(90°α) inside the PBS 26 dielectric layers 26A are the δ-forms 

Φδ6(0°)+=ξ cos(θ) cos(0°α) rδ(0°)+ , 

Φδ7(90°)=ξ sin(θ) sin(90°α) rδ(90°) 

             =ξ sin(θ) cos(0°α) rδ(90°), 

Φδ8(0°)=ξ cos(θ) sin(0°α) rδ(0°), 

and 

Φδ9(90°)=ξ sin(θ) sin(0°α) rδ(90°). 

The δ-form projections Φδ6(0°)+ and Φδ7(90°) sum vectorally to give a 

resultant on path 10, Fig.’s 2A and 2C  

Φδ6(0°)++Φδ7(90°)= ξ cos(θ) cos(0°α) rδ(0°)++ξ sin(θ) cos(0°α) rδ(90°) 

                             = ξ cos(0°α) [cos(θ)  rδ(0°)++ sin(θ) rδ(90°)] 

                             = ξ cos(0°α) r(θ)+ 

                             =Φ10(θ)+. 



37 

QuWT 

 

The line 2→3 transition of the bracketed [  ] factor to r(θ)+ represents a non-

random emission process in which orthogonal, mutually accompanying 

waves Φδ6(0°)+ and Φδ7(90°)  deterministically combine to a definite 

orientation.  

Similarly, the δ-form projections Φδ8(0°) and Φδ9(90°) sum vectorally to give 

a resultant on path 11 

Φδ8(0°)+Φδ9(90°)=ξ cos(θ) sin(0°α) rδ(0°)+ξ sin(θ) sin(0°α) rδ(90°). 

                            =ξ sin(0°α) [cos(θ) rδ(0°)+ sin(θ) rδ(90°)] 

.                           =ξ sin(0°α) rδ(θ) 

                            =Φ11(θ). 

The LR analysis of the PBS loop demonstrates that the Φ10 and Φ11 

orientations are identical to that of Φ1. Moreover, |Φ10|2 +|Φ11|2 shows that 

probability is conserved relative to |Φ1|2. Φ10(θ)+ is occupied and Φ11(θ) is 

empty. 

OUTCOME WHEN PATH 5 OF PBS M-Z LOOP IS BLOCKED 

It is of particular interest at this juncture to examine the resultant output 

loop amplitudes Φ10 and Φ11 when path 5 is blocked and the empty Φ5  

 

Fig. 2.6d. Diagrammatic representation of waves on dielectric 26A when 

path 5 of the PBS M-Z loop is blocked.  

does not reach PBS 26. With that blockage, at PBS 26 the result is similar to 

Φ1 incident on PBS 25 yielding Φ4 and Φ5. With path 5 blocked we have only 
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the Φ6 and Φ8 δ-form amplitudes to consider in the PBS 26 dielectric layer 

shown as 26A in Fig. 2.6d. We have again in 26A  

Φδ6(0°)+=ξ cos(θ) cos(0°α) rδ(0°)+.  

In an emission process 

Φ10(0°β)+= ξ cos(θ) cos(0°α) r(0°β)+. 

Similarly, 

Φ8(0°)+=ξ cos(θ) sin(0°α) rδ(0°) 

yields, in an emission process,  

Φ11(90°β)= ξ cos(θ) sin(0°α) r(90°β).  

With path 5 blocked, the resultant Φ10(0°β)+ and Φ11(90°β) have the 

orientations of random members of 0°-polarized and 90°-polarized 

ensembles, respectively, but correlated to the β member of those 

ensembles. With respect to the occupied output path Φ10, the two conditions 

of an unblocked and a blocked path 5 respectively yield different outcomes  

Φ10(θ)+= ξ cos(0°α) r(θ)+  

and 

Φ10(0°β)+=ξ cos(θ) cos(0°α) r(0°β)+. 

2.9 INTERACTION-FREE MEASUREMENT 

Totally interaction-free measurement IFM can be implemented by modifying 

the Fig. 2.6a PBS M-Z loop to the configuration depicted in Fig. 2.7. The IFM 

relates to an object 20 that potentially is either absent, leaving path 5 

unblocked, or present, causing path 5 to be blocked. 

The functionality of the Fig. 2.7 configuration necessitates the path 1 Φ1(θ)+ 

be multi-photon linearly polarized modes with respect to the vertical 0° axis. 

A beam splitter 35 extracts a photon-occupied sample of the incident modes, 

identified as Φ1B(θ)+ and directs it on path 1B to a polarizer 17 leaving the 

normalized remainder Φ1A(θ)+=ξ  r(θ)+  incident on path 1A. Concurrently, the 

Φ10(θ)+ mode, temporally derived from the same incident  Φ1(θ)+ mode as 

Φ1B(θ)+ by path equalization, encounters a polarizer 15. Polarizers 17 and 15 

are both set to +45° with the two polarizers followed by detectors 18 and 16, 
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respectively. The detector outputs are connected to a coincidence module 

19. 

If object 20 is absent, path 5 is unblocked and Φ10 arrives at polarizer 15 as 

Φ10(θ)+=ξ cos(0°α) r(θ)+ 

            =ξ cos(0°α) r(0°μ)+ 

where in the particular present case it is consequential that the orientation θ 

can be expressed as θ=0°μ, i.e. as the orientation of a random member of a 

0°-polarization ensemble.   

Thereby, for a large number of successive modes arriving at the Fig. 2.7 

configuration, 50% register as coincidences at module 19 and 50% are null 

events with neither detector contributing a positive signal to module 19. 

There are no single events in which coincidence module 19 receives a 

positive signal from only one of the two detectors for a given mode incident 

on the Fig. 2.7 configuration.       

Alternatively, if object 20 is present, path 5 is blocked and Φ10 arrives at 

polarizer 15 as 

Φ10(0°β)+=ξ cos(θ) cos(0°α) r(0°β)+ 

and the 0°-polarization ensemble member orientations 0°β of Φ10 and 0°μ of 

Φ1B are mutually uncorrelated. 
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Fig. 2.7. 100% interaction-free measurement, IFM, with a vertically 

polarized SLM source and a modified PBS M-Z loop. 

 

Consequently, as a large number of successive modes are incident on the 

Fig. 2.7 configuration, the coincidence module 19 registers 25% coincident 

events, 50% single events and 25% null events. 

The differing measurement results of the coincidence module 19 permit a 

determination of whether 20 is either absent or present. In principle, the 

presence of object 20 is established with certainty as soon as a first single 

event is measured. Most notably the Fig. 2.7 configuration can determine 

the presence of object 20 with100% efficient interaction-free measurement.    


